- Jirage D, et al.
Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. U.S.A., 1999. 96(23): p. 13583-8 [PMID:10557364] - Gupta V,Willits MG,Glazebrook J
Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol. Plant Microbe Interact., 2000. 13(5): p. 503-11 [PMID:10796016] - Morris K, et al.
Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J., 2000. 23(5): p. 677-85 [PMID:10972893] - Asai T, et al.
Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell, 2000. 12(10): p. 1823-36 [PMID:11041879] - Frye CA,Tang D,Innes RW
Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. U.S.A., 2001. 98(1): p. 373-8 [PMID:11114160] - Bittner-Eddy PD,Beynon JL
The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol. Plant Microbe Interact., 2001. 14(3): p. 416-21 [PMID:11277440] - Parker JE, et al.
Genetic analysis of plant disease resistance pathways. Novartis Found. Symp., 2001. 236: p. 153-61; discussion 161-4 [PMID:11387977] - Jirage D, et al.
Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J., 2001. 26(4): p. 395-407 [PMID:11439127] - Feys BJ,Moisan LJ,Newman MA,Parker JE
Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J., 2001. 20(19): p. 5400-11 [PMID:11574472] - Nawrath C,Heck S,Parinthawong N,Métraux JP
EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell, 2002. 14(1): p. 275-86 [PMID:11826312] - van der Biezen EA,Freddie CT,Kahn K,Parker JE,Jones JD
Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J., 2002. 29(4): p. 439-51 [PMID:11846877] - Brodersen P, et al.
Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev., 2002. 16(4): p. 490-502 [PMID:11850411] - Varet A, et al.
NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. Mol. Plant Microbe Interact., 2002. 15(6): p. 608-16 [PMID:12059109] - Cui J, et al.
Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae. Plant Physiol., 2002. 129(2): p. 551-64 [PMID:12068100] - Zhang B,Ramonell K,Somerville S,Stacey G
Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant Microbe Interact., 2002. 15(9): p. 963-70 [PMID:12236603] - Fellbrich G, et al.
NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J., 2002. 32(3): p. 375-90 [PMID:12410815] - van Wees SC,Glazebrook J
Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant J., 2003. 33(4): p. 733-42 [PMID:12609045] - Glazebrook J, et al.
Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J., 2003. 34(2): p. 217-28 [PMID:12694596] - Yun BW, et al.
Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J., 2003. 34(6): p. 768-77 [PMID:12795697] - van Wees SC,Chang HS,Zhu T,Glazebrook J
Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol., 2003. 132(2): p. 606-17 [PMID:12805591] - Ferrari S,Plotnikova JM,De Lorenzo G,Ausubel FM
Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J., 2003. 35(2): p. 193-205 [PMID:12848825] - Zhang Y,Goritschnig S,Dong X,Li X
A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell, 2003. 15(11): p. 2636-46 [PMID:14576290] - Yamada K,Nishimura M,Hara-Nishimura I
The slow wound-response of gammaVPE is regulated by endogenous salicylic acid in Arabidopsis. Planta, 2004. 218(4): p. 599-605 [PMID:14600834] - Heck S,Grau T,Buchala A,Métraux JP,Nawrath C
Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant J., 2003. 36(3): p. 342-52 [PMID:14617091] - Borhan MH,Holub EB,Beynon JL,Rozwadowski K,Rimmer SR
The arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4. Mol. Plant Microbe Interact., 2004. 17(7): p. 711-9 [PMID:15242165] - Song JT,Lu H,McDowell JM,Greenberg JT
A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J., 2004. 40(2): p. 200-12 [PMID:15447647] - Chandra-Shekara AC, et al.
Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J., 2004. 40(5): p. 647-59 [PMID:15546349] - Huang Z, et al.
Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. Plant Physiol., 2005. 137(3): p. 1147-59 [PMID:15728340] - Xiao S, et al.
The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J., 2005. 42(1): p. 95-110 [PMID:15773856] - Nandi A,Moeder W,Kachroo P,Klessig DF,Shah J
Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol. Plant Microbe Interact., 2005. 18(4): p. 363-70 [PMID:15828688] - Tang D,Christiansen KM,Innes RW
Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol., 2005. 138(2): p. 1018-26 [PMID:15894742] - Wiermer M,Feys BJ,Parker JE
Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol., 2005. 8(4): p. 383-9 [PMID:15939664] - Feys BJ, et al.
Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell, 2005. 17(9): p. 2601-13 [PMID:16040633] - Gil MJ,Coego A,Mauch-Mani B,Jordá L,Vera P
The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant J., 2005. 44(1): p. 155-66 [PMID:16167903] - Tang D,Ade J,Frye CA,Innes RW
Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J., 2005. 44(2): p. 245-57 [PMID:16212604] - Pegadaraju V,Knepper C,Reese J,Shah J
Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol., 2005. 139(4): p. 1927-34 [PMID:16299172] - Kachroo P,Venugopal SC,Navarre DA,Lapchyk L,Kachroo A
Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol., 2005. 139(4): p. 1717-35 [PMID:16306139] - McDowell JM,Williams SG,Funderburg NT,Eulgem T,Dangl JL
Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana. Mol. Plant Microbe Interact., 2005. 18(11): p. 1226-34 [PMID:16353557] - Yang S, et al.
The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant J., 2006. 45(2): p. 166-79 [PMID:16367962] - Yoshioka K, et al.
The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell, 2006. 18(3): p. 747-63 [PMID:16461580] - Bartsch M, et al.
Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell, 2006. 18(4): p. 1038-51 [PMID:16531493] - Consonni C, et al.
Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet., 2006. 38(6): p. 716-20 [PMID:16732289] - Ishikawa A,Kimura Y,Yasuda M,Nakashita H,Yoshida S
Salicylic acid-mediated cell death in the Arabidopsis len3 mutant. Biosci. Biotechnol. Biochem., 2006. 70(6): p. 1447-53 [PMID:16794326] - Yang H,Li Y,Hua J
The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J., 2006. 48(2): p. 238-48 [PMID:17018034] - Lee J, et al.
Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J., 2007. 49(1): p. 79-90 [PMID:17163880] - Kempema LA,Cui X,Holzer FM,Walling LL
Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol., 2007. 143(2): p. 849-65 [PMID:17189325] - Zarate SI,Kempema LA,Walling LL
Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol., 2007. 143(2): p. 866-75 [PMID:17189328] - Kim JH,Jander G
Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J., 2007. 49(6): p. 1008-19 [PMID:17257166] - Mishina TE,Zeier J
Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J., 2007. 50(3): p. 500-13 [PMID:17419843] - Chandra-Shekara AC,Venugopal SC,Barman SR,Kachroo A,Kachroo P
Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 2007. 104(17): p. 7277-82 [PMID:17431038] - Ham JH,Kim MG,Lee SY,Mackey D
Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Plant J., 2007. 51(4): p. 604-16 [PMID:17573803] - Yang H,Yang S,Li Y,Hua J
The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol., 2007. 145(1): p. 135-46 [PMID:17631528] - Pegadaraju V, et al.
Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J., 2007. 52(2): p. 332-41 [PMID:17725549] - Lee MW,Lu H,Jung HW,Greenberg JT
A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. Mol. Plant Microbe Interact., 2007. 20(10): p. 1192-200 [PMID:17918621] - Tsuda K,Sato M,Glazebrook J,Cohen JD,Katagiri F
Interplay between MAMP-triggered and SA-mediated defense responses. Plant J., 2008. 53(5): p. 763-75 [PMID:18005228] - Noël LD, et al.
Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell, 2007. 19(12): p. 4061-76 [PMID:18065690] - Bakker EG,Traw MB,Toomajian C,Kreitman M,Bergelson J
Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics, 2008. 178(4): p. 2031-43 [PMID:18245336] - Mishina TE,Zeier J
Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains. Physiol Plant, 2007. 131(3): p. 448-61 [PMID:18251883] - Ren D, et al.
A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 2008. 105(14): p. 5638-43 [PMID:18378893] - Adams-Phillips L, et al.
Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions. Mol. Plant Microbe Interact., 2008. 21(5): p. 646-57 [PMID:18393624] - Chassot C,Buchala A,Schoonbeek HJ,Métraux JP,Lamotte O
Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J., 2008. 55(4): p. 555-67 [PMID:18452590] - Borhan MH, et al.
WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Mol. Plant Microbe Interact., 2008. 21(6): p. 757-68 [PMID:18624640] - Wang L, et al.
The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. Mol. Plant Microbe Interact., 2008. 21(11): p. 1408-20 [PMID:18842091] - Kim MG,Geng X,Lee SY,Mackey D
The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2. Plant J., 2009. 57(4): p. 645-53 [PMID:18980653] - Caldwell KS,Michelmore RW
Arabidopsis thaliana genes encoding defense signaling and recognition proteins exhibit contrasting evolutionary dynamics. Genetics, 2009. 181(2): p. 671-84 [PMID:19064707] - Lu H, et al.
Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. Plant J., 2009. 58(3): p. 401-12 [PMID:19144005] - Wang L, et al.
Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog., 2009. 5(2): p. e1000301 [PMID:19214217] - Wang Y,Bao Z,Zhu Y,Hua J
Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant Microbe Interact., 2009. 22(5): p. 498-506 [PMID:19348568] - Venugopal SC, et al.
Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet., 2009. 5(7): p. e1000545 [PMID:19578402] - Gou M, et al.
An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant J., 2009. 60(5): p. 757-70 [PMID:19682297] - Zhang Z, et al.
A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. Mol Plant, 2008. 1(3): p. 510-27 [PMID:19825557] - Nishimura N, et al.
ABA hypersensitive germination2-1 causes the activation of both abscisic acid and salicylic acid responses in Arabidopsis. Plant Cell Physiol., 2009. 50(12): p. 2112-22 [PMID:19892832] - Mukherjee M, et al.
Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol. Plant Microbe Interact., 2010. 23(3): p. 340-51 [PMID:20121455] - Louis J,Leung Q,Pegadaraju V,Reese J,Shah J
PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Mol. Plant Microbe Interact., 2010. 23(5): p. 618-27 [PMID:20367470] - Wang C, et al.
Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol., 2010. 51(8): p. 1291-9 [PMID:20573705] - Huang X,Li J,Bao F,Zhang X,Yang S
A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol., 2010. 154(2): p. 796-809 [PMID:20699401] - Chen J, et al.
Proline induces calcium-mediated oxidative burst and salicylic acid signaling. Amino Acids, 2011. 40(5): p. 1473-84 [PMID:20890619] - Wagner S,Rietz S,Parker JE,Niefind K
Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana EDS1, a key component of plant immunity, in complex with its signalling partner SAG101. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2011. 67(Pt 2): p. 245-8 [PMID:21301097] - Singh V, et al.
TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J., 2011. 67(1): p. 94-104 [PMID:21426427] - Rietz S, et al.
Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol., 2011. 191(1): p. 107-19 [PMID:21434927] - Wang L, et al.
CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J., 2011. 67(6): p. 1029-41 [PMID:21615571] - Kim TH, et al.
Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr. Biol., 2011. 21(11): p. 990-7 [PMID:21620700] - Su'udi M, et al.
Arabidopsis cell death in compatible and incompatible interactions with Alternaria brassicicola. Mol. Cells, 2011. 31(6): p. 593-601 [PMID:21688205] - Ng G, et al.
Genetic dissection of salicylic acid-mediated defense signaling networks in Arabidopsis. Genetics, 2011. 189(3): p. 851-9 [PMID:21900271] - Zhu S, et al.
SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog., 2011. 7(11): p. e1002318 [PMID:22072959] - An C,Mou Z
Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS ONE, 2012. 7(1): p. e31130 [PMID:22299054] - Louis J, et al.
Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens. Plant Physiol., 2012. 158(4): p. 1860-72 [PMID:22353573] - Massoud K, et al.
Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol., 2012. 159(1): p. 286-98 [PMID:22408091] - Singh V,Shah J
Tomato responds to green peach aphid infestation with the activation of trehalose metabolism and starch accumulation. Plant Signal Behav, 2012. 7(6): p. 605-7 [PMID:22580694] - Singh I,Shah K
In silico study of interaction between rice proteins enhanced disease susceptibility 1 and phytoalexin deficient 4, the regulators of salicylic acid signalling pathway. J. Biosci., 2012. 37(3): p. 563-71 [PMID:22750992] - Louis J,Mondal HA,Shah J
Green peach aphid infestation induces Arabidopsis PHYTOALEXIN-DEFICIENT4 expression at site of insect feeding. Plant Signal Behav, 2012. 7(11): p. 1431-3 [PMID:22990443] - Návarová H,Bernsdorff F,Döring AC,Zeier J
Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell, 2012. 24(12): p. 5123-41 [PMID:23221596] - Kim TH, et al.
Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis. Plant Cell, 2012. 24(12): p. 5177-92 [PMID:23275581] - Zhu W, et al.
A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE, 2013. 8(1): p. e53901 [PMID:23342034] - Langenbach C,Campe R,Schaffrath U,Goellner K,Conrath U
UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol., 2013. 198(2): p. 536-45 [PMID:23356583] - Wang Y, et al.
The Arabidopsis elongator complex subunit2 epigenetically regulates plant immune responses. Plant Cell, 2013. 25(2): p. 762-76 [PMID:23435660] - Guo CY, et al.
A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Rep., 2013. 32(5): p. 687-702 [PMID:23462936] - Zbierzak AM, et al.
A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. Plant J., 2013. 75(4): p. 539-52 [PMID:23617639] - Youssef RM, et al.
Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes. BMC Plant Biol., 2013. 13: p. 67 [PMID:23617694] - Wang Y,Zhang Y,Wang Z,Zhang X,Yang S
A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. Plant J., 2013. 75(4): p. 553-65 [PMID:23651299] - Zhang K,Halitschke R,Yin C,Liu CJ,Gan SS
Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. U.S.A., 2013. 110(36): p. 14807-12 [PMID:23959884] - Wagner S, et al.
Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe, 2013. 14(6): p. 619-30 [PMID:24331460] - Trost G, et al.
Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/PAD4. Plant J., 2014. 77(5): p. 688-99 [PMID:24372773] - Ke Y,Liu H,Li X,Xiao J,Wang S
Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions. Plant J., 2014. 78(4): p. 619-31 [PMID:24617729] - Shi H, et al.
The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. Plant Physiol., 2014. 165(3): p. 1367-1379 [PMID:24834923] - Kohorn BD,Kohorn SL,Saba NJ,Martinez VM
Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. J. Biol. Chem., 2014. 289(27): p. 18978-86 [PMID:24855660] - Wang J, et al.
Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean. Plant Physiol., 2014. 165(3): p. 1269-1284 [PMID:24872380] - Ślesak I, et al.
PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides). Plant Cell Environ., 2015. 38(7): p. 1275-84 [PMID:24943986] - Lei J,A Finlayson S,Salzman RA,Shan L,Zhu-Salzman K
BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT4. Plant Physiol., 2014. 165(4): p. 1657-1670 [PMID:24963070] - Carstens M, et al.
Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature. PLoS ONE, 2014. 9(10): p. e109853 [PMID:25303634] - Vivancos J,Labbé C,Menzies JG,Bélanger RR
Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol. Plant Pathol., 2015. 16(6): p. 572-82 [PMID:25346281] - Cecchini NM,Jung HW,Engle NL,Tschaplinski TJ,Greenberg JT
ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis. Mol. Plant Microbe Interact., 2015. 28(4): p. 455-66 [PMID:25372120] - Louis J,Shah J
Plant defence against aphids: the PAD4 signalling nexus. J. Exp. Bot., 2015. 66(2): p. 449-54 [PMID:25416793] - Tandon G, et al.
Evidence of salicylic acid pathway with EDS1 and PAD4 proteins by molecular dynamics simulation for grape improvement. J. Biomol. Struct. Dyn., 2015. 33(10): p. 2180-91 [PMID:25483988] - Ding Y,Shaholli D,Mou Z
A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. Front Plant Sci, 2014. 5: p. 763 [PMID:25610446] - Duan Y, et al.
PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Rep., 2015. 34(5): p. 831-41 [PMID:25627252] - Makandar R, et al.
The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Mol. Plant Microbe Interact., 2015. 28(8): p. 943-53 [PMID:25915452] - Yang L, et al.
Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun, 2015. 6: p. 7309 [PMID:26065719] - Zheng XY, et al.
Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc. Natl. Acad. Sci. U.S.A., 2015. 112(30): p. 9166-73 [PMID:26139525] - Chen QF, et al.
Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance. Mol Plant, 2015. 8(10): p. 1536-49 [PMID:26149542] - Han B, et al.
Constitutive Expresser of Pathogenesis Related Genes 1 Is Required for Pavement Cell Morphogenesis in Arabidopsis. PLoS ONE, 2015. 10(7): p. e0133249 [PMID:26193674] - Liu H, et al.
Copper Ion Elicits Defense Response in Arabidopsis thaliana by Activating Salicylate- and Ethylene-Dependent Signaling Pathways. Mol Plant, 2015. 8(10): p. 1550-3 [PMID:26225489] - Yang L, et al.
Corrigendum: Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun, 2015. 6: p. 8145 [PMID:26265083] - Tan WJ,Xiao S,Chen QF
Potential role of salicylic acid in modulating diacylglycerol homeostasis in response to freezing temperatures in Arabidopsis. Plant Signal Behav, 2015. 10(11): p. e1082698 [PMID:26340231] - Disch EM, et al.
Membrane-Associated Ubiquitin Ligase SAUL1 Suppresses Temperature- and Humidity-Dependent Autoimmunity in Arabidopsis. Mol. Plant Microbe Interact., 2016. 29(1): p. 69-80 [PMID:26505534] - Mei S,Hou S,Cui H,Feng F,Rong W
Characterization of the interaction between Oidium heveae and Arabidopsis thaliana. Mol. Plant Pathol., 2016. 17(9): p. 1331-1343 [PMID:26724785] - Szechyńska-Hebda M,Czarnocka W,Hebda M,Bernacki MJ,Karpiński S
PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep., 2016. 35(3): p. 527-39 [PMID:26754794] - Lee IH, et al.
NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis. Physiol Plant, 2016. 158(2): p. 180-99 [PMID:26910207] - Liu S,Bartnikas LM,Volko SM,Ausubel FM,Tang D
Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance. Front Plant Sci, 2016. 7: p. 227 [PMID:26973671] - Shen C, et al.
Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis. J. Exp. Bot., 2016. 67(14): p. 4179-93 [PMID:27208542] - Cui H, et al.
A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol., 2017. 213(4): p. 1802-1817 [PMID:27861989] - Mine A, et al.
An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Rep., 2017. 18(3): p. 464-476 [PMID:28069610] - Rashid MH,Khan A,Hossain MT,Chung YR
Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Front Plant Sci, 2017. 8: p. 211 [PMID:28261260] - Hillmer RA, et al.
The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genet., 2017. 13(5): p. e1006639 [PMID:28472137] - Huh SU, et al.
Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathog., 2017. 13(5): p. e1006376 [PMID:28475615] - Gao Y, et al.
Both Light-Induced SA Accumulation and ETI Mediators Contribute to the Cell Death Regulated by BAK1 and BKK1. Front Plant Sci, 2017. 8: p. 622 [PMID:28487714] - Giri MK, et al.
GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J., 2017. 91(5): p. 802-815 [PMID:28622438] - Kong P,McDowell JM,Hong C
Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis. PLoS ONE, 2017. 12(6): p. e0180523 [PMID:28662148] - Wang B, et al.
Overexpression of AtPAD4 in transgenic Brachypodium distachyon enhances resistance to Puccinia brachypodii. Plant Biol (Stuttg), 2017. 19(6): p. 868-874 [PMID:28836326] - Pecenková T, et al.
Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae. Ann. Bot., 2017. 120(3): p. 437-446 [PMID:28911019] - Huang XX, et al.
Modulation of Plant Salicylic Acid-Associated Immune Responses via Glycosylation of Dihydroxybenzoic Acids. Plant Physiol., 2018. 176(4): p. 3103-3119 [PMID:29483147] - Glazebrook J,Rogers EE,Ausubel FM
Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 1996. 143(2): p. 973-82 [PMID:8725243] - Glazebrook J, et al.
Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics, 1997. 146(1): p. 381-92 [PMID:9136026] - Zhou N,Tootle TL,Tsui F,Klessig DF,Glazebrook J
PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell, 1998. 10(6): p. 1021-30 [PMID:9634589] - Reuber TL, et al.
Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J., 1998. 16(4): p. 473-85 [PMID:9881167]
|