PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID KZV24601.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Lamiales; Gesneriaceae; Didymocarpoideae; Trichosporeae; Loxocarpinae; Dorcoceras
Family Trihelix
Protein Properties Length: 924aa    MW: 104993 Da    PI: 5.3413
Description Trihelix family protein
Gene Model
Gene Model ID Type Source Coding Sequence
KZV24601.1genomeCNUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1trihelix63.54.9e-20665742171
    trihelix   1 rWtkqevlaLiearremeerlr.rg......klkkplWeevskkmrergferspkqCkekwenlnkrykkikegekkr 71 
                 +Wt ++v++Li+a++++++++  ++      ++ k++W+++sk m erg+ +sp+qC++k+++lnk+yk++++  ++ 
  KZV24601.1 665 KWTSEMVKLLITAVSYVGDDSFsESpegerrNRVKGKWRAISKCMIERGYFVSPQQCEDKFNDLNKKYKRLNDAVGST 742
                 7**************8866544132222222699**************************************987775 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:2.60.120.2003.1E-1034128IPR013320Concanavalin A-like lectin/glucanase domain
SuperFamilySSF561122.49E-68105400IPR011009Protein kinase-like domain
PROSITE profilePS5001131.51121412IPR000719Protein kinase domain
PfamPF000691.5E-34122397IPR000719Protein kinase domain
Gene3DG3DSA:3.30.200.201.5E-15129195No hitNo description
Gene3DG3DSA:1.10.510.103.8E-43197415No hitNo description
SuperFamilySSF561126.93E-23436567IPR011009Protein kinase-like domain
Gene3DG3DSA:1.10.510.102.5E-18475567No hitNo description
PfamPF000696.8E-12475551IPR000719Protein kinase domain
PfamPF138375.3E-18665741No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006468Biological Processprotein phosphorylation
GO:0004672Molecular Functionprotein kinase activity
GO:0005524Molecular FunctionATP binding
Sequence ? help Back to Top
Protein Sequence    Length: 924 aa     Download sequence    Send to blast
MSMVYDNWER LVAAVLKREE LREIALCPSF SSSSSFSSHL PSDPSPQRVS VASSATGVIA  60
GVVAAGAARL YSAPSLALAW YRRRKPGDNF FDVSAEGDPG GDLGHLKSFS LRELKAASDN  120
FSQKNFLGSS GFGKLYKGQL ADGSLVAVRR LKKPHGEIQF LTELEISHIA VHQNLLRLIG  180
FCNTAKEWLI VYPYMANGSV ASWLRERPES QAPLDWPIRK RIALGSARGL AYLHDHCDPK  240
IIHRDVKAAS ILLDEDFEAV VGDFRIAKLM DYKDTHVTTA VVGTFGHIAT EYLSTGKCSE  300
KTDAFSYGVM LLELITGQRP FDLAWLANVD DVMLLNWVSH ILDWVRGLLK EKKWETLVDA  360
DLQGNYVDEE VEQLIQLALL CTKSSPWERP KMSEVVRMLE GDGLAERWEE WQKEDMFRQE  420
FNHSHQPTAE EDPEGHQYPC MANGSVASCL RERPESQAPL DWSIRKRKAL RSYFKAANIF  480
LDEDFEAYVG DFGLAKLMDY KDTHVTTDVT GTTGHVDPEY LSTGKCSEKT DDFSYGVMLL  540
ELITCQRAFD LARLANDDDV MLLDWVRGHF LEKKLGTLVD GELRRHTEDM DSLLQELGNI  600
LPEEPLVLQE SQPSMQEPQQ RDHCSYPSLL AHPNQVPGPG LYFGCDNGLL DGGILSSEPL  660
WQRIKWTSEM VKLLITAVSY VGDDSFSESP EGERRNRVKG KWRAISKCMI ERGYFVSPQQ  720
CEDKFNDLNK KYKRLNDAVG STDSRIVVEN PALIDALDIR VENKEEVRKI LMCKQLFYQE  780
MFSYHNRNRN HIPQDESLRL SLLSALRGKI KQVSPNEIEE ITAVKRQKQG EDQAVSIPDT  840
QNSTEVCEKD HSPAIISRLL RVQKMKKQIQ DEKIELEKKR LGWLKSNQLE DMELQELKLE  900
NEVLKLENER LMLELTNWEI RANN
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3tl8_A0.0825891338BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1
3tl8_D0.0825891338BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1
3tl8_G0.0825891338BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1
3tl8_H0.0825891338BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtDual specificity kinase acting on both serine/threonine- and tyrosine-containing substrates. Controls the expression of genes associated with innate immunity in the absence of pathogens or elicitors. Involved in brassinosteroid (BR) signal transduction. Phosphorylates BRI1. May be involved in changing the equilibrium between plasma membrane-located BRI1 homodimers and endocytosed BRI1-BAK1 heterodimers. Interaction with MSBP1 stimulates the endocytosis of BAK1 and suppresses brassinosteroid signaling. Acts in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) via its interactions with FLS2 and EFR, and the phosphorylation of BIK1. Involved in programmed cell death (PCD) control. Positively regulates the BR-dependent plant growth pathway and negatively regulates the BR-independent cell-death pathway (PubMed:17583510, PubMed:17600708, PubMed:18667726, PubMed:18694562, PubMed:19124768, PubMed:20018402, PubMed:20404519, PubMed:21350342, PubMed:21693696). Phosphorylates BIR2 and thus promotes interaction with BIR2 (PubMed:24388849, PubMed:24556575). This interaction prevents interaction with FLS2 in the absence of pathogen-associated molecular patterns (PAMP) (PubMed:24388849, PubMed:24556575). Component of the RLP23-SOBIR1-BAK1 complex that mediates NLP-triggered immunity (PubMed:27251392). Required for PSK promotion of seedling growth and protoplast expansion (PubMed:26071421). CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes (PubMed:26071421). {ECO:0000269|PubMed:17583510, ECO:0000269|PubMed:17600708, ECO:0000269|PubMed:18667726, ECO:0000269|PubMed:18694562, ECO:0000269|PubMed:19124768, ECO:0000269|PubMed:20018402, ECO:0000269|PubMed:20404519, ECO:0000269|PubMed:21350342, ECO:0000269|PubMed:21693696, ECO:0000269|PubMed:24388849, ECO:0000269|PubMed:24556575, ECO:0000269|PubMed:26071421, ECO:0000269|PubMed:27251392}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapKZV24601.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by flagellin and harpin. {ECO:0000269|PubMed:20018402}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_011092409.10.0BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1
SwissprotQ94F620.0BAK1_ARATH; BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1
TrEMBLA0A2Z7ARR50.0A0A2Z7ARR5_9LAMI; Bri1-associated receptor kinase
STRINGBostr.7867s1189.1.p0.0(Boechera stricta)
STRINGXP_010437764.10.0(Camelina sativa)
STRINGXP_010447243.10.0(Camelina sativa)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G76870.15e-45
Publications ? help Back to Top
  1. Baudino S, et al.
    Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family.
    Planta, 2001. 213(1): p. 1-10
    [PMID:11523644]
  2. Hecht V, et al.
    The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture.
    Plant Physiol., 2001. 127(3): p. 803-16
    [PMID:11706164]
  3. Nam KH,Li J
    BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling.
    Cell, 2002. 110(2): p. 203-12
    [PMID:12150928]
  4. Li J, et al.
    BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling.
    Cell, 2002. 110(2): p. 213-22
    [PMID:12150929]
  5. Russinova E, et al.
    Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1).
    Plant Cell, 2004. 16(12): p. 3216-29
    [PMID:15548744]
  6. Wang X, et al.
    Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase.
    Plant Cell, 2005. 17(6): p. 1685-703
    [PMID:15894717]
  7. Whippo CW,Hangarter RP
    A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism.
    Plant Physiol., 2005. 139(1): p. 448-57
    [PMID:16126860]
  8. Wang X,Chory J
    Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane.
    Science, 2006. 313(5790): p. 1118-22
    [PMID:16857903]
  9. Wang L, et al.
    Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide.
    J. Plant Physiol., 2007. 164(5): p. 655-64
    [PMID:17027118]
  10. Ding Z, et al.
    Phosphoprotein and phosphopeptide interactions with the FHA domain from Arabidopsis kinase-associated protein phosphatase.
    Biochemistry, 2007. 46(10): p. 2684-96
    [PMID:17302430]
  11. Kemmerling B, et al.
    The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control.
    Curr. Biol., 2007. 17(13): p. 1116-22
    [PMID:17583510]
  12. He K, et al.
    BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways.
    Curr. Biol., 2007. 17(13): p. 1109-15
    [PMID:17600708]
  13. Chinchilla D, et al.
    A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.
    Nature, 2007. 448(7152): p. 497-500
    [PMID:17625569]
  14. Heese A, et al.
    The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(29): p. 12217-22
    [PMID:17626179]
  15. Hink MA,Shah K,Russinova E,de Vries SC,Visser AJ
    Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization.
    Biophys. J., 2008. 94(3): p. 1052-62
    [PMID:17905839]
  16. Shan L, et al.
    Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.
    Cell Host Microbe, 2008. 4(1): p. 17-27
    [PMID:18621007]
  17. Albrecht C,Russinova E,Kemmerling B,Kwaaitaal M,de Vries SC
    Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways.
    Plant Physiol., 2008. 148(1): p. 611-9
    [PMID:18667726]
  18. Wang X, et al.
    Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling.
    Dev. Cell, 2008. 15(2): p. 220-35
    [PMID:18694562]
  19. Karlova R, et al.
    Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases.
    Proteomics, 2009. 9(2): p. 368-79
    [PMID:19105183]
  20. Ryu HY, et al.
    Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death.
    Biochem. Biophys. Res. Commun., 2009. 379(2): p. 417-22
    [PMID:19118534]
  21. Oh MH, et al.
    Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(2): p. 658-63
    [PMID:19124768]
  22. Yun HS, et al.
    Analysis of phosphorylation of the BRI1/BAK1 complex in arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling.
    Mol. Cells, 2009. 27(2): p. 183-90
    [PMID:19277500]
  23. Song L,Shi QM,Yang XH,Xu ZH,Xue HW
    Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1.
    Cell Res., 2009. 19(7): p. 864-76
    [PMID:19532123]
  24. Gao M, et al.
    Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis.
    Cell Host Microbe, 2009. 6(1): p. 34-44
    [PMID:19616764]
  25. Postel S, et al.
    The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity.
    Eur. J. Cell Biol., 2010 Feb-Mar. 89(2-3): p. 169-74
    [PMID:20018402]
  26. Gou X, et al.
    Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana.
    BMC Genomics, 2010. 11: p. 19
    [PMID:20064227]
  27. Schulze B, et al.
    Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1.
    J. Biol. Chem., 2010. 285(13): p. 9444-51
    [PMID:20103591]
  28. Lu D,Wu S,He P,Shan L
    Phosphorylation of receptor-like cytoplasmic kinases by bacterial flagellin.
    Plant Signal Behav, 2010. 5(5): p. 598-600
    [PMID:20404519]
  29. Oh MH, et al.
    Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(41): p. 17827-32
    [PMID:20876109]
  30. Oh MH,Wu X,Clouse SD,Huber SC
    Functional importance of BAK1 tyrosine phosphorylation in vivo.
    Plant Signal Behav, 2011. 6(3): p. 400-5
    [PMID:21350342]
  31. Schwessinger B, et al.
    Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1.
    PLoS Genet., 2011. 7(4): p. e1002046
    [PMID:21593986]
  32. Wang Z,Meng P,Zhang X,Ren D,Yang S
    BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis.
    Plant J., 2011. 67(6): p. 1081-93
    [PMID:21623975]
  33. Ranf S,Eschen-Lippold L,Pecher P,Lee J,Scheel D
    Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns.
    Plant J., 2011. 68(1): p. 100-13
    [PMID:21668535]
  34. Lu D, et al.
    Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity.
    Science, 2011. 332(6036): p. 1439-42
    [PMID:21680842]
  35. Roux M, et al.
    The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens.
    Plant Cell, 2011. 23(6): p. 2440-55
    [PMID:21693696]
  36. Cheng W, et al.
    Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector.
    Cell Host Microbe, 2011. 10(6): p. 616-26
    [PMID:22169508]
  37. Gao J, et al.
    Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana BRI1-associated kinase 1 (BAK1) cytoplasmic domain.
    Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2012. 68(Pt 3): p. 340-2
    [PMID:22442239]
  38. Du J, et al.
    Somatic embryogenesis receptor kinases control root development mainly via brassinosteroid-independent actions in Arabidopsis thaliana.
    J Integr Plant Biol, 2012. 54(6): p. 388-99
    [PMID:22525267]
  39. Yan L, et al.
    Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1.
    Cell Res., 2012. 22(8): p. 1304-8
    [PMID:22547027]
  40. Kørner CJ, et al.
    The immunity regulator BAK1 contributes to resistance against diverse RNA viruses.
    Mol. Plant Microbe Interact., 2013. 26(11): p. 1271-80
    [PMID:23902263]
  41. Kim MH, et al.
    Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid-regulated root phenotypes.
    Plant Cell Physiol., 2013. 54(10): p. 1620-34
    [PMID:23921992]
  42. Fàbregas N, et al.
    The brassinosteroid insensitive1-like3 signalosome complex regulates Arabidopsis root development.
    Plant Cell, 2013. 25(9): p. 3377-88
    [PMID:24064770]
  43. van Esse W,van Mourik S,Albrecht C,van Leeuwen J,de Vries S
    A mathematical model for the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE3 in BRASSINOSTEROID INSENSITIVE1-mediated signaling.
    Plant Physiol., 2013. 163(3): p. 1472-81
    [PMID:24072582]
  44. Zhang W, et al.
    Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi.
    Plant Cell, 2013. 25(10): p. 4227-41
    [PMID:24104566]
  45. Sun Y, et al.
    Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex.
    Science, 2013. 342(6158): p. 624-8
    [PMID:24114786]
  46. Sun Y, et al.
    Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide.
    Cell Res., 2013. 23(11): p. 1326-9
    [PMID:24126715]
  47. Halter T, et al.
    The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity.
    Curr. Biol., 2014. 24(2): p. 134-43
    [PMID:24388849]
  48. Bojar D, et al.
    Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation.
    Plant J., 2014. 78(1): p. 31-43
    [PMID:24461462]
  49. Lin W, et al.
    Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(9): p. 3632-7
    [PMID:24532660]
  50. Oh MH, et al.
    The Carboxy-terminus of BAK1 regulates kinase activity and is required for normal growth of Arabidopsis.
    Front Plant Sci, 2014. 5: p. 16
    [PMID:24550926]
  51. Blaum BS, et al.
    Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis.
    J. Struct. Biol., 2014. 186(1): p. 112-21
    [PMID:24556575]
  52. Prince DC,Drurey C,Zipfel C,Hogenhout SA
    The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis.
    Plant Physiol., 2014. 164(4): p. 2207-19
    [PMID:24586042]
  53. Kim BH,Kwon Y,Lee BH,Nam KH
    Overexpression of miR172 suppresses the brassinosteroid signaling defects of bak1 in Arabidopsis.
    Biochem. Biophys. Res. Commun., 2014. 447(3): p. 479-84
    [PMID:24732353]
  54. Shinya T, et al.
    Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27.
    Plant J., 2014. 79(1): p. 56-66
    [PMID:24750441]
  55. Wang Y, et al.
    Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profiling of phosphorylation patterns.
    J Proteomics, 2014. 108: p. 484-93
    [PMID:24953020]
  56. Segonzac C, et al.
    Negative control of BAK1 by protein phosphatase 2A during plant innate immunity.
    EMBO J., 2014. 33(18): p. 2069-79
    [PMID:25085430]
  57. Tateda C, et al.
    Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling.
    Plant Cell, 2014. 26(10): p. 4171-87
    [PMID:25315322]
  58. Koller T,Bent AF
    FLS2-BAK1 extracellular domain interaction sites required for defense signaling activation.
    PLoS ONE, 2014. 9(10): p. e111185
    [PMID:25356676]
  59. Bender KW, et al.
    Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro.
    Biochem. J., 2015. 467(3): p. 399-413
    [PMID:25678081]
  60. Aan den Toorn M,Albrecht C,de Vries S
    On the Origin of SERKs: Bioinformatics Analysis of the Somatic Embryogenesis Receptor Kinases.
    Mol Plant, 2015. 8(5): p. 762-82
    [PMID:25864910]
  61. Domínguez-Ferreras A,Kiss-Papp M,Jehle AK,Felix G,Chinchilla D
    An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner.
    Plant Physiol., 2015. 168(3): p. 1106-21
    [PMID:25944825]
  62. Ladwig F, et al.
    Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1.
    Plant Cell, 2015. 27(6): p. 1718-29
    [PMID:26071421]
  63. Meng X, et al.
    Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning.
    Curr. Biol., 2015. 25(18): p. 2361-72
    [PMID:26320950]
  64. Yamada K, et al.
    Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1.
    EMBO J., 2016. 35(1): p. 46-61
    [PMID:26574534]
  65. Postma J, et al.
    Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.
    New Phytol., 2016. 210(2): p. 627-42
    [PMID:26765243]
  66. Teixeira MA,Wei L,Kaloshian I
    Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots.
    New Phytol., 2016. 211(1): p. 276-87
    [PMID:26892116]
  67. Gravino M, et al.
    Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2.
    Mol. Plant Pathol., 2017. 18(4): p. 582-595
    [PMID:27118426]
  68. Tunc-Ozdemir M,Urano D,Jaiswal DK,Clouse SD,Jones AM
    Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.
    J. Biol. Chem., 2016. 291(27): p. 13918-25
    [PMID:27235398]
  69. de Oliveira MV, et al.
    Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation.
    Nat Plants, 2016. 2: p. 15218
    [PMID:27250875]
  70. Albert I, et al.
    An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.
    Nat Plants, 2015. 1: p. 15140
    [PMID:27251392]
  71. Yeh YH, et al.
    The Arabidopsis Malectin-Like/LRR-RLK IOS1 Is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity.
    Plant Cell, 2016. 28(7): p. 1701-21
    [PMID:27317676]
  72. Liu Y,Huang X,Li M,He P,Zhang Y
    Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1.
    New Phytol., 2016. 212(3): p. 637-645
    [PMID:27400831]
  73. Li L, et al.
    Activation-Dependent Destruction of a Co-receptor by a Pseudomonas syringae Effector Dampens Plant Immunity.
    Cell Host Microbe, 2016. 20(4): p. 504-514
    [PMID:27736646]
  74. van Esse GW, et al.
    Transcriptional Analysis of serk1 and serk3 Coreceptor Mutants.
    Plant Physiol., 2016. 172(4): p. 2516-2529
    [PMID:27803191]
  75. Kim SY,Shang Y,Joo SH,Kim SK,Nam KH
    Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes.
    Biochem. Biophys. Res. Commun., 2017. 484(4): p. 781-786
    [PMID:28153720]
  76. Liu J, et al.
    BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis.
    J Integr Plant Biol, 2017. 59(4): p. 234-239
    [PMID:28225199]
  77. Moffett AS,Bender KW,Huber SC,Shukla D
    Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases.
    J. Biol. Chem., 2017. 292(30): p. 12643-12652
    [PMID:28559283]
  78. Vincent TR, et al.
    Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding.
    Plant Cell, 2017. 29(6): p. 1460-1479
    [PMID:28559475]
  79. Imkampe J, et al.
    The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1.
    Plant Cell, 2017. 29(9): p. 2285-2303
    [PMID:28842532]
  80. Dressano K, et al.
    BAK1 is involved in AtRALF1-induced inhibition of root cell expansion.
    PLoS Genet., 2017. 13(10): p. e1007053
    [PMID:29028796]
  81. Moffett AS,Bender KW,Huber SC,Shukla D
    Allosteric Control of a Plant Receptor Kinase through S-Glutathionylation.
    Biophys. J., 2017. 113(11): p. 2354-2363
    [PMID:29211989]
  82. Wu D,Liu Y,Xu F,Zhang Y
    Differential requirement of BAK1 C-terminal tail in development and immunity.
    J Integr Plant Biol, 2018. 60(4): p. 270-275
    [PMID:29227029]
  83. Peng Y, et al.
    BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis.
    Nat Commun, 2018. 9(1): p. 1522
    [PMID:29670153]
  84. Perraki A, et al.
    Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling.
    Nature, 2018. 561(7722): p. 248-252
    [PMID:30177827]