PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Medtr3g498695.1
Common NameMTR_3g498695
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Trifolieae; Medicago
Family bHLH
Protein Properties Length: 486aa    MW: 53390 Da    PI: 6.3798
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Medtr3g498695.1genomeMtView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH361.2e-11301343754
                      HHHHHHHHHHHHHHHHHHCTSCC.C...TTS-STCHHHHHHHHHHHHHH CS
              HLH   7 erErrRRdriNsafeeLrellPk.askapskKlsKaeiLekAveYIksL 54 
                      ++ErrRR+++N+++  Lr+++Pk +      K++ a+iL  A+eY+k+L
  Medtr3g498695.1 301 MAERRRRKKLNDRLYMLRSVVPKiS------KMDRASILGDAIEYLKEL 343
                      79*********************66......****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.764294343IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.44E-16297361IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000102.8E-9300343IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003536.2E-14300349IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.74E-12301347No hitNo description
Gene3DG3DSA:4.10.280.107.8E-16301356IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd048737.57E-7414474No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0010440Biological Processstomatal lineage progression
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0050826Biological Processresponse to freezing
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 486 aa     Download sequence    Send to blast
MLSRMNSNNN GWMEEREDEN NTTNPNTPSS ASPAFIHNHN NKQQDFSSFI KPMLGEIDED  60
DEQWYIRDMS FSSAPNLDNV LLHTINDSVS SSCSPSSSVF NTLLHPEPTP SNSNHLQYFL  120
PPQNHKPINP FDLPCELGFL DHQASTMAAS SFMGSFVDFA SKTPLTATAT TTQLLSLPHL  180
PQINNAFMGF QNSQEGSGKS LFLRPLDSLP SSGTQPTLFQ KRAALRKNMG KCEIGEGSDK  240
KRKFSGGDEI DDLSFDGSGL NYDSDDLTES NGKNIGNGSN GNSTVTDQKG KKKGMPAKNL  300
MAERRRRKKL NDRLYMLRSV VPKISKMDRA SILGDAIEYL KELLQRINDL HNELESTPAG  360
SSLTPASSLH PLTPTPSSLP GRIKEELCPS SLPSPNGQPA RVEVRLREGR AVNIHMFCTR  420
KPGLLLSTMR ALDNLGLDIQ QAVISCFNGF AMDIFRAEQC KEGQDVHPEQ IKAVLLDSAG  480
FNGMI*
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1290308KKKGMPAKNLMAERRRRKK
2302309ERRRRKKL
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Widely expressed in the whole plant with high expression in leaves and stem. Broad expression within stomatal cell lineages of leaf epidermis. {ECO:0000269|PubMed:18641265}.
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:17416732, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapMedtr3g498695.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt stress, cold stress and abscisic acid (ABA) treatment.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankFJ3932260.0FJ393226.1 Glycine max inducer of CBF expression 4 (ICE4) mRNA, complete cds.
GenBankHM9899280.0HM989928.1 Glycine max ICEd mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_013461649.10.0transcription factor ICE1 isoform X1
SwissprotQ9LSE21e-131ICE1_ARATH; Transcription factor ICE1
TrEMBLA0A072V0Y60.0A0A072V0Y6_MEDTR; BHLH transcriptional factor
STRINGXP_004501748.10.0(Cicer arietinum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF24143482
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G26744.41e-120bHLH family protein
Publications ? help Back to Top
  1. Young ND, et al.
    The Medicago genome provides insight into the evolution of rhizobial symbioses.
    Nature, 2011. 480(7378): p. 520-4
    [PMID:22089132]
  2. Chen Y, et al.
    Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    BMC Biol., 2013. 11: p. 121
    [PMID:24350981]
  3. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  4. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  5. Lang Z,Zhu J
    OST1 phosphorylates ICE1 to enhance plant cold tolerance.
    Sci China Life Sci, 2015. 58(3): p. 317-8
    [PMID:25680856]
  6. Juan JX, et al.
    Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Genet. Mol. Res., 2015. 14(1): p. 597-608
    [PMID:25729995]
  7. Lee HG,Seo PJ
    The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.
    Plant J., 2015. 82(6): p. 962-77
    [PMID:25912720]
  8. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  9. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  10. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  11. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  12. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  13. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  14. Chen L, et al.
    NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.
    Development, 2016. 143(9): p. 1600-11
    [PMID:26989174]
  15. Lu X, et al.
    A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 113: p. 78-88
    [PMID:28189052]
  16. Deng C,Ye H,Fan M,Pu T,Yan J
    The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1316442
    [PMID:28414264]
  17. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  18. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  19. Pal S, et al.
    TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
    Plant Physiol., 2017. 175(2): p. 916-926
    [PMID:28827455]
  20. Zhao C, et al.
    MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.
    Dev. Cell, 2017. 43(5): p. 618-629.e5
    [PMID:29056551]
  21. Li H, et al.
    MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Dev. Cell, 2017. 43(5): p. 630-642.e4
    [PMID:29056553]
  22. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  23. Liu Y,Zhou J
    MAPping Kinase Regulation of ICE1 in Freezing Tolerance.
    Trends Plant Sci., 2018. 23(2): p. 91-93
    [PMID:29248419]
  24. Xie H, et al.
    Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana.
    Plant Cell Physiol., 2019. 60(1): p. 152-165
    [PMID:30295898]