PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID OMERI02G32430.4
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; BOP clade; Oryzoideae; Oryzeae; Oryzinae; Oryza
Family GeBP
Protein Properties Length: 882aa    MW: 98488.4 Da    PI: 6.0807
Description GeBP family protein
Gene Model
Gene Model ID Type Source Coding Sequence
OMERI02G32430.4genomeOGEView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1DUF573477.4e-15136227298
           DUF573   2 lfqrlwseeDeivlLqGlidfkaktgkspsddidafyefvkksisfk.vsksqlveKirrLKkKfkkkvkkaksgkepsfskehdqkifelskk 94 
                      +f+r+ws eDe+ +L +l   + ++g  +   +da++ ++ +s++ + + +++l  K+  LK++++   kk  +g+    sk hd+  ++lsk+
  OMERI02G32430.4 136 AFHRIWSTEDEVRILEALAAHRREHG--SLPQTDALIATLAGSLDNTgYGRKELQGKVSTLKRRYESTAKK--KGDL--PSKGHDRRLYDLSKS 223
                      699******************99999..678899**********8653899******************99..5554..5799*********** PP

           DUF573  95 iWgs 98 
                      +Wgs
  OMERI02G32430.4 224 VWGS 227
                      **95 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF045045.3E-21137226IPR007592Protein of unknown function DUF573
Gene3DG3DSA:2.130.10.102.4E-58561877IPR015943WD40/YVTN repeat-like-containing domain
SMARTSM003200.52562606IPR001680WD40 repeat
PROSITE profilePS5029427.869574834IPR017986WD40-repeat-containing domain
SuperFamilySSF509784.09E-53579877IPR017986WD40-repeat-containing domain
CDDcd002006.20E-38581877No hitNo description
SMARTSM003201.2617656IPR001680WD40 repeat
SMARTSM003201.5E-7659699IPR001680WD40 repeat
PfamPF004000.0064660698IPR001680WD40 repeat
PROSITE profilePS5008210.041666698IPR001680WD40 repeat
SMARTSM003200.68700741IPR001680WD40 repeat
SMARTSM003202.6E-7745783IPR001680WD40 repeat
PfamPF004008.7E-4748783IPR001680WD40 repeat
PROSITE profilePS5008212.714752792IPR001680WD40 repeat
PROSITE patternPS006780770784IPR019775WD40 repeat, conserved site
SMARTSM003200.74786825IPR001680WD40 repeat
SMARTSM00320380835879IPR001680WD40 repeat
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006281Biological ProcessDNA repair
GO:0009640Biological Processphotomorphogenesis
GO:0009641Biological Processshade avoidance
GO:0009649Biological Processentrainment of circadian clock
GO:0010119Biological Processregulation of stomatal movement
GO:0016311Biological Processdephosphorylation
GO:0046283Biological Processanthocyanin-containing compound metabolic process
GO:0048573Biological Processphotoperiodism, flowering
GO:0016604Cellular Componentnuclear body
GO:0004725Molecular Functionprotein tyrosine phosphatase activity
GO:0004842Molecular Functionubiquitin-protein transferase activity
GO:0008270Molecular Functionzinc ion binding
GO:0042802Molecular Functionidentical protein binding
Sequence ? help Back to Top
Protein Sequence    Length: 882 aa     Download sequence    Send to blast
MAPKRPTPPP PLPPVASSEE TASGSDSDES ESEEEESPLA QPAPVVSNKG AESDSSGEEE  60
SEEEEEEEED LVRSSATKSK APPQENREED DSSEEEEGES SESEKAEPPP PPPLNPAPKL  120
GAEGNGPKVS SPKRQAFHRI WSTEDEVRIL EALAAHRREH GSLPQTDALI ATLAGSLDNT  180
GYGRKELQGK VSTLKRRYES TAKKKGDLPS KGHDRRLYDL SKSVWGSEAA AAAAANGTTA  240
PREFGEMCEL YPHLAEEVKL LEAAHPGLFK RDFGKLDDDK AHALDMKIKK QRIAEISVVL  300
RRGDLTKEVT KVLKKMSARQ IAKTASPIDQ FRYALQQGND MAVKELDSLM TLIAEKKRHM  360
EQQESETNMQ ILLVFLHCLR KQKLEELNEI QTDLQYIKED ISAVERHRLE LYRTKERYSM  420
KLRMLLDEPA ASKMWPSPMD KPSGLFPPNS RGPLCTSHPG GLQNKKLDLK GQISHQGFQR  480
RDVLTCSDPP SAPIQSGNVI ARKRRVQAQF NELQEYYLQR RRTGAQSRRL EERDIVTINK  540
EGYHAGLEDF QSVLTTFTRY SRLRVIAELR HGDLFHSANI VSSIEFDRDD ELFATAGVSK  600
RIKVFEFSTV VNEPSDVHCP VVEMATRSKL SCLSWNKYSK NVIASSDYEG IVTVWDVQTG  660
QSVMEYEEHE KRAWSVDFSR TEPSMLVSGS DDCKVKVWCT KQEASAINID MKANICSVKY  720
NPGSSHYVAV GSADHHIHYF DLRNPSAPVH VFGGHKKAVS YVKFLSTNEL ASASTDSTLR  780
LWDVKENCPV RTFRGHKNEK NFVGLSVNNE YIACGSETNE VFVYHKAISK PAANHRFVSS  840
DLDDADDDPG SYFISAVCWK SDSPTMLTAN SQGTIKVLVL AP
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5igo_A0.055688110335E3 ubiquitin-protein ligase COP1
5igo_B0.055688110335E3 ubiquitin-protein ligase COP1
5igo_C0.055688110335E3 ubiquitin-protein ligase COP1
5igo_D0.055688110335E3 ubiquitin-protein ligase COP1
5kwn_A0.055688110335E3 ubiquitin-protein ligase COP1
6qto_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtq_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtr_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtt_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtu_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtv_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtw_A0.05568814329E3 ubiquitin-protein ligase COP1
6qtx_A0.05568814329E3 ubiquitin-protein ligase COP1
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtE3 ubiquitin-protein ligase that acts as a repressor of photomorphogenesis and as an activator of etiolation in darkness. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Represses photomorphogenesis in darkness by mediating ubiquitination and subsequent proteasomal degradation of light-induced transcription factors such as HY5, HYH and LAF1. Down-regulates MYB21, probably via ubiquitination process. Light stimuli abrogate the repression of photomorphogenesis, possibly due to its localization to the cytoplasm. Could play a role in switching between skotomorphogenetic and photomorphogenetic pathways. Mediates the ubiquitination-dependent degradation of HY5 in the darkness during seedling development (e.g. hypocotyl growth) (PubMed:26474641). Represses CIP7 in darkness (PubMed:9668129). {ECO:0000269|PubMed:11967090, ECO:0000269|PubMed:12023303, ECO:0000269|PubMed:26474641, ECO:0000269|PubMed:9668129}.
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK1116140.0AK111614.1 Oryza sativa Japonica Group cDNA clone:J013104O14, full insert sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_015627602.10.0E3 ubiquitin-protein ligase COP1
SwissprotP432540.0COP1_ARATH; E3 ubiquitin-protein ligase COP1
TrEMBLA0A0E0CS220.0A0A0E0CS22_9ORYZ; Uncharacterized protein
STRINGOMERI02G31630.10.0(Oryza meridionalis)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G66420.11e-07DNA-binding storekeeper protein-related transcriptional regulator
Publications ? help Back to Top
  1. Stacey MG,Hicks SN,von Arnim AG
    Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1.
    Plant Cell, 1999. 11(3): p. 349-64
    [PMID:10072396]
  2. Osterlund MT,Ang LH,Deng XW
    The role of COP1 in repression of Arabidopsis photomorphogenic development.
    Trends Cell Biol., 1999. 9(3): p. 113-8
    [PMID:10201077]
  3. Sullivan JA,Gray JC
    Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant
    Plant Cell, 1999. 11(5): p. 901-10
    [PMID:10330474]
  4. Wang H,Kang D,Deng XW,Wei N
    Evidence for functional conservation of a mammalian homologue of the light-responsive plant protein COP1.
    Curr. Biol., 1999. 9(13): p. 711-4
    [PMID:10395541]
  5. Stacey MG,von Arnim AG
    A novel motif mediates the targeting of the Arabidopsis COP1 protein to subnuclear foci.
    J. Biol. Chem., 1999. 274(38): p. 27231-6
    [PMID:10480941]
  6. Torii KU, et al.
    The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein.
    J. Biol. Chem., 1999. 274(39): p. 27674-81
    [PMID:10488108]
  7. Holm M,Deng XW
    Structural organization and interactions of COP1, a light-regulated developmental switch.
    Plant Mol. Biol., 1999. 41(2): p. 151-8
    [PMID:10579483]
  8. Mundt KE, et al.
    The COP9/signalosome complex is conserved in fission yeast and has a role in S phase.
    Curr. Biol., 1999. 9(23): p. 1427-30
    [PMID:10607571]
  9. Deng XW
    Light control of Arabidopsis developmental pattern.
    Symp. Soc. Exp. Biol., 1998. 51: p. 93-6
    [PMID:10645429]
  10. Stoop-Myer C,Torii KU,McNellis TW,Coleman JE,Deng XW
    Short communication: the N-terminal fragment of Arabidopsis photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner.
    Plant J., 1999. 20(6): p. 713-7
    [PMID:10652143]
  11. Hsieh HL, et al.
    FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development.
    Genes Dev., 2000. 14(15): p. 1958-70
    [PMID:10921909]
  12. Sullivan JA,Gray JC
    The pea light-independent photomorphogenesis1 mutant results from partial duplication of COP1 generating an internal promoter and producing two distinct transcripts.
    Plant Cell, 2000. 12(10): p. 1927-38
    [PMID:11041887]
  13. Stacey MG,Kopp OR,Kim TH,von Arnim AG
    Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta.
    Plant Physiol., 2000. 124(3): p. 979-90
    [PMID:11080276]
  14. Yamamoto YY,Deng X,Matsui M
    Cip4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis photomorphogenesis.
    Plant Cell, 2001. 13(2): p. 399-411
    [PMID:11226193]
  15. Raghuvanshi S,Kelkar A,Khurana JP,Tyagi AK
    Isolation and molecular characterization of the COP1 gene homolog from rice, Oryza sativa L. subsp. Indica var. Pusa Basmati 1.
    DNA Res., 2001. 8(2): p. 73-9
    [PMID:11347904]
  16. Tsuge T, et al.
    Phytochrome-mediated control of COP1 gene expression in rice plants.
    Mol. Genet. Genomics, 2001. 265(1): p. 43-50
    [PMID:11370871]
  17. Hoecker U,Quail PH
    The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis.
    J. Biol. Chem., 2001. 276(41): p. 38173-8
    [PMID:11461903]
  18. Yang HQ,Tang RH,Cashmore AR
    The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1.
    Plant Cell, 2001. 13(12): p. 2573-87
    [PMID:11752373]
  19. Suzuki G,Yanagawa Y,Kwok SF,Matsui M,Deng XW
    Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis.
    Genes Dev., 2002. 16(5): p. 554-9
    [PMID:11877375]
  20. Hu J, et al.
    A role for peroxisomes in photomorphogenesis and development of Arabidopsis.
    Science, 2002. 297(5580): p. 405-9
    [PMID:12130786]
  21. Lebedev N,Van Cleve B,Armstrong G,Apel K
    Chlorophyll Synthesis in a Deetiolated (det340) Mutant of Arabidopsis without NADPH-Protochlorophyllide (PChlide) Oxidoreductase (POR) A and Photoactive PChlide-F655.
    Plant Cell, 1995. 7(12): p. 2081-2090
    [PMID:12242369]
  22. Qin H,von Arnim AG
    Epigenetic history of an Arabidopsis trans-silencer locus and a test for relay of trans-silencing activity.
    BMC Plant Biol., 2002. 2: p. 11
    [PMID:12477384]
  23. Laubinger S,Hoecker U
    The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light.
    Plant J., 2003. 35(3): p. 373-85
    [PMID:12887588]
  24. Deng XW, et al.
    COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain.
    Cell, 1992. 71(5): p. 791-801
    [PMID:1423630]
  25. Dieterle M,Buche C,Schafer E,Kretsch T
    Characterization of a novel non-constitutive photomorphogenic cop1 allele.
    Plant Physiol., 2003. 133(4): p. 1557-64
    [PMID:14605231]
  26. Wei N,Deng XW
    COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis.
    Plant Cell, 1992. 4(12): p. 1507-18
    [PMID:1467650]
  27. Frances S, et al.
    Initial characterization of a pea mutant with light-independent photomorphogenesis.
    Plant Cell, 1992. 4(12): p. 1519-30
    [PMID:1467651]
  28. Seo HS,Watanabe E,Tokutomi S,Nagatani A,Chua NH
    Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling.
    Genes Dev., 2004. 18(6): p. 617-22
    [PMID:15031264]
  29. Subramanian C, et al.
    The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(17): p. 6798-802
    [PMID:15084749]
  30. Feng S, et al.
    Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation.
    Plant Cell, 2004. 16(7): p. 1870-82
    [PMID:15208391]
  31. Laubinger S,Fittinghoff K,Hoecker U
    The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in arabidopsis.
    Plant Cell, 2004. 16(9): p. 2293-306
    [PMID:15308756]
  32. Yanagawa Y, et al.
    Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes.
    Genes Dev., 2004. 18(17): p. 2172-81
    [PMID:15342494]
  33. Mao J,Zhang YC,Sang Y,Li QH,Yang HQ
    From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(34): p. 12270-5
    [PMID:16093319]
  34. Casal JJ,Yanovsky MJ
    Regulation of gene expression by light.
    Int. J. Dev. Biol., 2005. 49(5-6): p. 501-11
    [PMID:16096960]
  35. Kim BH,von Arnim AG
    The early dark-response in Arabidopsis thaliana revealed by cDNA microarray analysis.
    Plant Mol. Biol., 2006. 60(3): p. 321-42
    [PMID:16514558]
  36. Chen H, et al.
    Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development.
    Plant Cell, 2006. 18(8): p. 1991-2004
    [PMID:16844902]
  37. Li QH,Yang HQ
    Cryptochrome signaling in plants.
    Photochem. Photobiol., 2007 Jan-Feb. 83(1): p. 94-101
    [PMID:17002522]
  38. Xu X, et al.
    Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(24): p. 10264-9
    [PMID:17551013]
  39. Lee JH, et al.
    Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases.
    Plant Cell, 2008. 20(1): p. 152-67
    [PMID:18223036]
  40. Bhatia S,Gangappa SN,Kushwaha R,Kundu S,Chattopadhyay S
    SHORT HYPOCOTYL IN WHITE LIGHT1, a serine-arginine-aspartate-rich protein in Arabidopsis, acts as a negative regulator of photomorphogenic growth.
    Plant Physiol., 2008. 147(1): p. 169-78
    [PMID:18375596]
  41. Dohmann EM, et al.
    The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.
    Development, 2008. 135(11): p. 2013-22
    [PMID:18434413]
  42. Zhang Y, et al.
    Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes.
    Plant Cell, 2008. 20(6): p. 1437-55
    [PMID:18552200]
  43. Favory JJ, et al.
    Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.
    EMBO J., 2009. 28(5): p. 591-601
    [PMID:19165148]
  44. Wang X, et al.
    Regulation of COP1 nuclear localization by the COP9 signalosome via direct interaction with CSN1.
    Plant J., 2009. 58(4): p. 655-67
    [PMID:19175768]
  45. Bhatia S,Gangappa SN,Chattopadhyay S
    SHW1, a common regulator of abscisic acid (ABA) and light signaling pathways.
    Plant Signal Behav, 2008. 3(10): p. 862-4
    [PMID:19704523]
  46. Hong SY,Lee S,Seo PJ,Yang MS,Park CM
    Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants.
    Plant Mol. Biol., 2010. 72(4-5): p. 485-97
    [PMID:20012169]
  47. Liu Y,Misamore MJ,Snell WJ
    Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas.
    Development, 2010. 137(9): p. 1473-81
    [PMID:20335357]
  48. Jeong RD, et al.
    Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(30): p. 13538-43
    [PMID:20624951]
  49. Deng XW,Caspar T,Quail PH
    cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis.
    Genes Dev., 1991. 5(7): p. 1172-82
    [PMID:2065972]
  50. Jeong RD,Kachroo A,Kachroo P
    Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis.
    Plant Signal Behav, 2010. 5(11): p. 1504-9
    [PMID:21057210]
  51. Xie Q,Soutto M,Xu X,Zhang Y,Johnson CH
    Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells.
    Methods Mol. Biol., 2011. 680: p. 3-28
    [PMID:21153370]
  52. Balcerowicz M, et al.
    Light exposure of Arabidopsis seedlings causes rapid de-stabilization as well as selective post-translational inactivation of the repressor of photomorphogenesis SPA2.
    Plant J., 2011. 65(5): p. 712-23
    [PMID:21235648]
  53. Rizzini L, et al.
    Perception of UV-B by the Arabidopsis UVR8 protein.
    Science, 2011. 332(6025): p. 103-6
    [PMID:21454788]
  54. Lian HL, et al.
    Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism.
    Genes Dev., 2011. 25(10): p. 1023-8
    [PMID:21511872]
  55. Tanaka N, et al.
    The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice.
    Plant Cell, 2011. 23(6): p. 2143-54
    [PMID:21705640]
  56. Gu NN,Zhang YC,Yang HQ
    Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Mol Plant, 2012. 5(1): p. 85-97
    [PMID:21765176]
  57. Li J,Li G,Wang H,Wang Deng X
    Phytochrome signaling mechanisms.
    Arabidopsis Book, 2011. 9: p. e0148
    [PMID:22303272]
  58. Viczián A, et al.
    A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response.
    Mol Plant, 2012. 5(3): p. 629-41
    [PMID:22498774]
  59. Sassi M, et al.
    COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis.
    Development, 2012. 139(18): p. 3402-12
    [PMID:22912415]
  60. O'Hara A,Jenkins GI
    In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8.
    Plant Cell, 2012. 24(9): p. 3755-66
    [PMID:23012433]
  61. Heilmann M,Jenkins GI
    Rapid reversion from monomer to dimer regenerates the ultraviolet-B photoreceptor UV RESISTANCE LOCUS8 in intact Arabidopsis plants.
    Plant Physiol., 2013. 161(1): p. 547-55
    [PMID:23129206]
  62. Heijde M,Ulm R
    Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(3): p. 1113-8
    [PMID:23277547]
  63. Debrieux D,Trevisan M,Fankhauser C
    Conditional involvement of constitutive photomorphogenic1 in the degradation of phytochrome A.
    Plant Physiol., 2013. 161(4): p. 2136-45
    [PMID:23391578]
  64. Ganpudi AL,Schroeder DF
    Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1.
    G3 (Bethesda), 2013. 3(3): p. 493-503
    [PMID:23450167]
  65. Li YY, et al.
    Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis.
    Plant Physiol. Biochem., 2013. 67: p. 169-77
    [PMID:23570872]
  66. Schrader A,Welter B,Hulskamp M,Hoecker U,Uhrig JF
    MIDGET connects COP1-dependent development with endoreduplication in Arabidopsis thaliana.
    Plant J., 2013. 75(1): p. 67-79
    [PMID:23573936]
  67. Müller K, et al.
    Multi-chromatic control of mammalian gene expression and signaling.
    Nucleic Acids Res., 2013. 41(12): p. e124
    [PMID:23625964]
  68. Pacín M,Legris M,Casal JJ
    COP1 re-accumulates in the nucleus under shade.
    Plant J., 2013. 75(4): p. 631-41
    [PMID:23647163]
  69. Crefcoeur RP,Yin R,Ulm R,Halazonetis TD
    Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells.
    Nat Commun, 2013. 4: p. 1779
    [PMID:23653191]
  70. Jing Y,Lin R
    PICKLE is a repressor in seedling de-etiolation pathway.
    Plant Signal Behav, 2014.
    [PMID:23733056]
  71. Schrader A,Uhrig J
    MIDGET cooperates with COP1 and SPA1 to repress flowering in Arabidopsis thaliana.
    Plant Signal Behav, 2014.
    [PMID:23857347]
  72. Karayekov E,Sellaro R,Legris M,Yanovsky MJ,Casal JJ
    Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation.
    Plant Cell, 2013. 25(8): p. 2892-906
    [PMID:23933882]
  73. Huang X, et al.
    Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(41): p. 16669-74
    [PMID:24067658]
  74. Heijde M, et al.
    Constitutively active UVR8 photoreceptor variant in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(50): p. 20326-31
    [PMID:24277841]
  75. Huang X,Deng XW
    Organization of protein complexes under photomorphogenic UV-B in Arabidopsis.
    Plant Signal Behav, 2013. 8(11): p. e27206
    [PMID:24304604]
  76. Kim B, et al.
    Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis.
    Plant J., 2014. 77(5): p. 737-47
    [PMID:24387668]
  77. Tossi V,Lamattina L,Jenkins GI,Cassia RO
    Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism.
    Plant Physiol., 2014. 164(4): p. 2220-30
    [PMID:24586043]
  78. Huang X,Yang P,Ouyang X,Chen L,Deng XW
    Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis.
    PLoS Genet., 2014. 10(3): p. e1004218
    [PMID:24651064]
  79. Luo Q, et al.
    COP1 and phyB Physically Interact with PIL1 to Regulate Its Stability and Photomorphogenic Development in Arabidopsis.
    Plant Cell, 2014. 26(6): p. 2441-2456
    [PMID:24951480]
  80. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
    [PMID:25063454]
  81. Takeuchi T,Newton L,Burkhardt A,Mason S,Farré EM
    Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles.
    J. Exp. Bot., 2014. 65(20): p. 6003-12
    [PMID:25147271]
  82. Khanna R, et al.
    COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure.
    Mol Plant, 2014. 7(9): p. 1441-1454
    [PMID:25151660]
  83. Meng LS
    Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic1.
    Plant Cell Environ., 2015. 38(4): p. 838-51
    [PMID:25256341]
  84. Jenkins GI
    Structure and function of the UV-B photoreceptor UVR8.
    Curr. Opin. Struct. Biol., 2014. 29: p. 52-7
    [PMID:25300065]
  85. Li T, et al.
    Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Biochem. Biophys. Res. Commun., 2014. 454(1): p. 78-83
    [PMID:25450360]
  86. Maier A,Hoecker U
    COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.
    Plant Signal Behav, 2015. 10(1): p. e970440
    [PMID:25482806]
  87. Adams E,Diaz C,Hong JP,Shin R
    14-3-3 proteins participate in light signaling through association with PHYTOCHROME INTERACTING FACTORs.
    Int J Mol Sci, 2014. 15(12): p. 22801-14
    [PMID:25501334]
  88. Mao K,Jiang L,Bo W,Xu F,Wu R
    Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.
    PLoS ONE, 2014. 9(12): p. e115201
    [PMID:25503486]
  89. Cho SK,Ben Chaabane S,Shah P,Poulsen CP,Yang SW
    COP1 E3 ligase protects HYL1 to retain microRNA biogenesis.
    Nat Commun, 2014. 5: p. 5867
    [PMID:25532508]
  90. Delker C, et al.
    The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis.
    Cell Rep, 2014. 9(6): p. 1983-9
    [PMID:25533339]
  91. Ly V,Collister DT,Fonseca E,Liao TS,Schroeder DF
    Light and COP1 regulate level of overexpressed DET1 protein.
    Plant Sci., 2015. 231: p. 114-23
    [PMID:25575996]
  92. Hofmann NR
    A mechanism for inhibition of COP1 in photomorphogenesis: direct interactions of phytochromes with SPA proteins.
    Plant Cell, 2015. 27(1): p. 8
    [PMID:25627064]
  93. Sheerin DJ, et al.
    Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex.
    Plant Cell, 2015. 27(1): p. 189-201
    [PMID:25627066]
  94. Yin R,Arongaus AB,Binkert M,Ulm R
    Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.
    Plant Cell, 2015. 27(1): p. 202-13
    [PMID:25627067]
  95. Karumuri S,Bandopadhyay R
    In silico analysis of the structure and interaction of COP1 protein of Arabidopsis thaliana.
    Indian J. Biochem. Biophys., 2014. 51(5): p. 343-9
    [PMID:25630103]
  96. Ordoñez-Herrera N, et al.
    A cop1 spa mutant deficient in COP1 and SPA proteins reveals partial co-action of COP1 and SPA during Arabidopsis post-embryonic development and photomorphogenesis.
    Mol Plant, 2015. 8(3): p. 479-81
    [PMID:25667004]
  97. Lu XD, et al.
    Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis.
    Mol Plant, 2015. 8(3): p. 467-78
    [PMID:25744387]
  98. Xie L,Lang-Mladek C,Richter J,Nigam N,Hauser MT
    UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1.
    Plant Physiol. Biochem., 2015. 93: p. 18-28
    [PMID:25817546]
  99. Bourbousse C, et al.
    Light signaling controls nuclear architecture reorganization during seedling establishment.
    Proc. Natl. Acad. Sci. U.S.A., 2015. 112(21): p. E2836-44
    [PMID:25964332]
  100. Zhu L, et al.
    CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1.
    Nat Commun, 2015. 6: p. 7245
    [PMID:26037329]
  101. Singh SP,Singh SP,Pandey T,Singh RR,Sawant SV
    A novel male sterility-fertility restoration system in plants for hybrid seed production.
    Sci Rep, 2015. 5: p. 11274
    [PMID:26073981]
  102. Hajdu A, et al.
    High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis.
    Plant J., 2015. 83(5): p. 794-805
    [PMID:26120968]
  103. Jang K,Lee HG,Jung SJ,Paek NC,Seo PJ
    The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis.
    Sci Rep, 2015. 5: p. 12071
    [PMID:26159740]
  104. Meng LS,Liu A
    Light signaling induces anthocyanin biosynthesis via AN3 mediated COP1 expression.
    Plant Signal Behav, 2015. 10(9): p. e1001223
    [PMID:26357851]
  105. Sarid-Krebs L, et al.
    Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis.
    Plant J., 2015. 84(3): p. 451-63
    [PMID:26358558]
  106. Chen S,Lory N,Stauber J,Hoecker U
    Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis.
    PLoS Genet., 2015. 11(9): p. e1005516
    [PMID:26368289]
  107. Xu X,Paik I,Zhu L,Huq E
    Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways.
    Trends Plant Sci., 2015. 20(10): p. 641-650
    [PMID:26440433]
  108. Srivastava AK, et al.
    Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development.
    Plant Physiol., 2015. 169(4): p. 2922-34
    [PMID:26474641]
  109. Xu D, et al.
    Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association.
    PLoS Genet., 2015. 11(12): p. e1005747
    [PMID:26714275]
  110. Liu B, et al.
    Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
    J. Plant Res., 2016. 129(2): p. 137-48
    [PMID:26810763]
  111. Yu Y, et al.
    Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.
    Plant Physiol., 2016. 170(4): p. 2340-50
    [PMID:26850275]
  112. Uljon S, et al.
    Structural Basis for Substrate Selectivity of the E3 Ligase COP1.
    Structure, 2016. 24(5): p. 687-696
    [PMID:27041596]
  113. Pacín M,Semmoloni M,Legris M,Finlayson SA,Casal JJ
    Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance.
    New Phytol., 2016. 211(3): p. 967-79
    [PMID:27105120]
  114. Lin XL, et al.
    An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity.
    PLoS Genet., 2016. 12(4): p. e1006016
    [PMID:27128446]
  115. Xu X, et al.
    Convergence of light and chloroplast signals for de-etiolation through ABI4-HY5 and COP1.
    Nat Plants, 2016. 2(6): p. 16066
    [PMID:27255835]
  116. Xu D, et al.
    BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(27): p. 7655-60
    [PMID:27325768]
  117. Ren C,Zhu X,Zhang P,Gong Q
    Arabidopsis COP1-interacting protein 1 is a positive regulator of ABA response.
    Biochem. Biophys. Res. Commun., 2016. 477(4): p. 847-853
    [PMID:27372427]
  118. Ghura S, et al.
    Arabidopsis thaliana extracts optimized for polyphenols production as potential therapeutics for the APOE-modulated neuroinflammation characteristic of Alzheimer's disease in vitro.
    Sci Rep, 2016. 6: p. 29364
    [PMID:27383500]
  119. Heilmann M, et al.
    Dimer/monomer status and in vivo function of salt-bridge mutants of the plant UV-B photoreceptor UVR8.
    Plant J., 2016. 88(1): p. 71-81
    [PMID:27385642]
  120. Yin R,Skvortsova MY,Loubéry S,Ulm R
    COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(30): p. E4415-22
    [PMID:27407149]
  121. Wei CQ, et al.
    The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis.
    J Genet Genomics, 2016. 43(9): p. 555-563
    [PMID:27523280]
  122. Kim JY,Jang IC,Seo HS
    COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.
    Front Plant Sci, 2016. 7: p. 1182
    [PMID:27536318]
  123. Fernando VC,Schroeder DF
    Arabidopsis DDB1-CUL4 E3 ligase complexes in det1 salt/osmotic stress resistant germination.
    Plant Signal Behav, 2016. 11(9): p. e1223004
    [PMID:27547879]
  124. Jaegle B, et al.
    A fast and simple LC-MS-based characterization of the flavonoid biosynthesis pathway for few seed(ling)s.
    BMC Plant Biol., 2016. 16(1): p. 190
    [PMID:27586417]
  125. Myers ZA, et al.
    NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana.
    PLoS Genet., 2016. 12(9): p. e1006333
    [PMID:27685091]
  126. Hayes S, et al.
    UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis.
    Curr. Biol., 2017. 27(1): p. 120-127
    [PMID:27989670]
  127. Gimeno-Ferrer F, et al.
    α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth.
    J. Exp. Bot., 2017. 68(3): p. 391-401
    [PMID:28025315]
  128. Gangappa SN,Kumar SV
    DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms.
    Cell Rep, 2017. 18(2): p. 344-351
    [PMID:28076780]
  129. Yu Y,Huang R
    Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 57
    [PMID:28174592]
  130. Jenkins GI
    Photomorphogenic responses to ultraviolet-B light.
    Plant Cell Environ., 2017. 40(11): p. 2544-2557
    [PMID:28183154]
  131. Elrouby N
    Regulation of Plant Cellular and Organismal Development by SUMO.
    Adv. Exp. Med. Biol., 2017. 963: p. 227-247
    [PMID:28197916]
  132. Ling JJ,Li J,Zhu D,Deng XW
    Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(13): p. 3539-3544
    [PMID:28292892]
  133. Zheng Y, et al.
    Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings.
    Plant J., 2017. 90(6): p. 1144-1155
    [PMID:28321936]
  134. Park YJ,Lee HJ,Ha JH,Kim JY,Park CM
    COP1 conveys warm temperature information to hypocotyl thermomorphogenesis.
    New Phytol., 2017. 215(1): p. 269-280
    [PMID:28418582]
  135. Xu X, et al.
    Reciprocal proteasome-mediated degradation of PIFs and HFR1 underlies photomorphogenic development in Arabidopsis.
    Development, 2017. 144(10): p. 1831-1840
    [PMID:28420710]
  136. Yao L,Zheng Y,Zhu Z
    Jasmonate suppresses seedling soil emergence in Arabidopsis thaliana.
    Plant Signal Behav, 2017. 12(6): p. e1330239
    [PMID:28534718]
  137. Balcerowicz M,Kerner K,Schenkel C,Hoecker U
    SPA Proteins Affect the Subcellular Localization of COP1 in the COP1/SPA Ubiquitin Ligase Complex during Photomorphogenesis.
    Plant Physiol., 2017. 174(3): p. 1314-1321
    [PMID:28536102]
  138. Lin F, et al.
    Phosphorylation and negative regulation of CONSTITUTIVELY PHOTOMORPHOGENIC 1 by PINOID in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(25): p. 6617-6622
    [PMID:28584104]
  139. Oakenfull RJ,Davis SJ
    Shining a light on the Arabidopsis circadian clock.
    Plant Cell Environ., 2017. 40(11): p. 2571-2585
    [PMID:28732105]
  140. Kim SH,Kim H,Chung S,Lee JH
    DHU1 negatively regulates UV-B signaling via its direct interaction with COP1 and RUP1.
    Biochem. Biophys. Res. Commun., 2017. 491(2): p. 285-290
    [PMID:28735869]
  141. Wang X, et al.
    A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Plant J., 2017. 92(3): p. 426-436
    [PMID:28833729]
  142. Xu D,Deng XW
    Reply to Jin and Zhu: PINOID-mediated COP1 phosphorylation matters in photomorphogenesis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(39): p. E8136-E8137
    [PMID:28912351]
  143. Jin H,Zhu Z
    Role of PINOID-mediated COP1 phosphorylation in Arabidopsis photomorphogenesis is overemphasized.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(39): p. E8134-E8135
    [PMID:28912352]
  144. Kim JY,Song JT,Seo HS
    Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions.
    FEBS Open Bio, 2017. 7(10): p. 1622-1634
    [PMID:28979848]
  145. Holtkotte X,Ponnu J,Ahmad M,Hoecker U
    The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
    PLoS Genet., 2017. 13(10): p. e1007044
    [PMID:28991901]
  146. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  147. Lian N, et al.
    COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(46): p. 12321-12326
    [PMID:29087315]
  148. Kim S, et al.
    High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5.
    Front Plant Sci, 2017. 8: p. 1787
    [PMID:29104579]
  149. Gao L,Li Y,Shen Z,Han R
    Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress.
    Protoplasma, 2018. 255(3): p. 761-771
    [PMID:29138939]
  150. Swain S,Jiang HW,Hsieh HL
    FAR-RED INSENSITIVE 219/JAR1 Contributes to Shade Avoidance Responses of Arabidopsis Seedlings by Modulating Key Shade Signaling Components.
    Front Plant Sci, 2017. 8: p. 1901
    [PMID:29163619]
  151. Ordoñez-Herrera N, et al.
    The Transcription Factor COL12 Is a Substrate of the COP1/SPA E3 Ligase and Regulates Flowering Time and Plant Architecture.
    Plant Physiol., 2018. 176(2): p. 1327-1340
    [PMID:29187570]
  152. Xu D,Jiang Y,Li J,Holm M,Deng XW
    The B-Box Domain Protein BBX21 Promotes Photomorphogenesis.
    Plant Physiol., 2018. 176(3): p. 2365-2375
    [PMID:29259103]
  153. Lee BD, et al.
    The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering.
    Nat Commun, 2017. 8(1): p. 2259
    [PMID:29273730]
  154. Hammoudi V, et al.
    The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth.
    PLoS Genet., 2018. 14(1): p. e1007157
    [PMID:29357355]
  155. Lim GH, et al.
    COP1, a negative regulator of photomorphogenesis, positively regulates plant disease resistance via double-stranded RNA binding proteins.
    PLoS Pathog., 2018. 14(3): p. e1006894
    [PMID:29513740]
  156. Moriconi V, et al.
    Perception of Sunflecks by the UV-B Photoreceptor UV RESISTANCE LOCUS8.
    Plant Physiol., 2018. 177(1): p. 75-81
    [PMID:29530938]
  157. Kim JY, et al.
    Nitrate Reductases Are Relocalized to the Nucleus by AtSIZ1 and Their Levels Are Negatively Regulated by COP1 and Ammonium.
    Int J Mol Sci, 2018.
    [PMID:29662028]
  158. Moazzam-Jazi M,Ghasemi S,Seyedi SM,Niknam V
    COP1 plays a prominent role in drought stress tolerance in Arabidopsis and Pea.
    Plant Physiol. Biochem., 2018. 130: p. 678-691
    [PMID:30139551]
  159. Matsui M,Stoop CD,von Arnim AG,Wei N,Deng XW
    Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1.
    Proc. Natl. Acad. Sci. U.S.A., 1995. 92(10): p. 4239-43
    [PMID:7753789]
  160. Reed JW,Chory J
    Mutational analyses of light-controlled seedling development in Arabidopsis.
    Semin. Cell Biol., 1994. 5(5): p. 327-34
    [PMID:7881072]
  161. McNellis TW,von Arnim AG,Deng XW
    Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis.
    Plant Cell, 1994. 6(10): p. 1391-400
    [PMID:7994173]
  162. von Arnim AG,Deng XW
    Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning.
    Cell, 1994. 79(6): p. 1035-45
    [PMID:8001131]
  163. Miséra S,Müller AJ,Weiland-Heidecker U,Jürgens G
    The FUSCA genes of Arabidopsis: negative regulators of light responses.
    Mol. Gen. Genet., 1994. 244(3): p. 242-52
    [PMID:8058035]
  164. McNellis TW, et al.
    Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains.
    Plant Cell, 1994. 6(4): p. 487-500
    [PMID:8205001]
  165. Li HM,Altschmied L,Chory J
    Arabidopsis mutants define downstream branches in the phototransduction pathway.
    Genes Dev., 1994. 8(3): p. 339-49
    [PMID:8314087]
  166. von Arnim AG,Deng XW
    Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain.
    J. Biol. Chem., 1993. 268(26): p. 19626-31
    [PMID:8366106]
  167. Dynlacht BD,Weinzierl RO,Admon A,Tjian R
    The dTAFII80 subunit of Drosophila TFIID contains beta-transducin repeats.
    Nature, 1993. 363(6425): p. 176-9
    [PMID:8483503]
  168. Desnos T, et al.
    Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings.
    Development, 1996. 122(2): p. 683-93
    [PMID:8625819]
  169. Chamovitz DA, et al.
    The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch.
    Cell, 1996. 86(1): p. 115-21
    [PMID:8689678]
  170. McNellis TW,Torii KU,Deng XW
    Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis.
    Plant Cell, 1996. 8(9): p. 1491-503
    [PMID:8837504]
  171. Mayer R,Raventos D,Chua NH
    det1, cop1, and cop9 mutations cause inappropriate expression of several gene sets.
    Plant Cell, 1996. 8(11): p. 1951-9
    [PMID:8953766]
  172. Staub JM,Wei N,Deng XW
    Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis.
    Plant Cell, 1996. 8(11): p. 2047-56
    [PMID:8953769]
  173. von Arnim AG,Osterlund MT,Kwok SF,Deng XW
    Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis.
    Plant Physiol., 1997. 114(3): p. 779-88
    [PMID:9232869]
  174. Sperling U, et al.
    Etioplast differentiation in arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant.
    Plant Cell, 1998. 10(2): p. 283-96
    [PMID:9490750]
  175. Zhao L,Wang C,Zhu Y,Zhao J,Wu X
    Molecular cloning and sequencing of the cDNA of cop1 gene from Pisum sativum.
    Biochim. Biophys. Acta, 1998. 1395(3): p. 326-8
    [PMID:9512668]
  176. Zhou DX,Kim YJ,Li YF,Carol P,Mache R
    COP1b, an isoform of COP1 generated by alternative splicing, has a negative effect on COP1 function in regulating light-dependent seedling development in Arabidopsis.
    Mol. Gen. Genet., 1998. 257(4): p. 387-91
    [PMID:9529519]
  177. Yamamoto YY,Matsui M,Ang LH,Deng XW
    Role of a COP1 interactive protein in mediating light-regulated gene expression in arabidopsis.
    Plant Cell, 1998. 10(7): p. 1083-94
    [PMID:9668129]
  178. Chattopadhyay S,Puente P,Deng XW,Wei N
    Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis.
    Plant J., 1998. 15(1): p. 69-77
    [PMID:9744096]
  179. Simpson CG,McQuade C,Lyon J,Brown JW
    Characterization of exon skipping mutants of the COP1 gene from Arabidopsis.
    Plant J., 1998. 15(1): p. 125-31
    [PMID:9744100]
  180. Kim BC,Tennessen DJ,Last RL
    UV-B-induced photomorphogenesis in Arabidopsis thaliana.
    Plant J., 1998. 15(5): p. 667-74
    [PMID:9778848]
  181. Kwok SF, et al.
    Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations.
    Plant Cell, 1998. 10(11): p. 1779-90
    [PMID:9811788]
  182. Osterlund MT,Deng XW
    Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei.
    Plant J., 1998. 16(2): p. 201-8
    [PMID:9839465]
  183. von Arnim AG,Deng XW,Stacey MG
    Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants.
    Gene, 1998. 221(1): p. 35-43
    [PMID:9852947]