PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID RrC3561_p5
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Brassiceae; Raphanus
Family GRAS
Protein Properties Length: 399aa    MW: 45267.1 Da    PI: 5.8514
Description GRAS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
RrC3561_p5genomeMSUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1GRAS362.46.5e-111153973374
        GRAS   3 elLlecAeavssgdlelaqalLarlselaspdgdpmqRlaayfteALaarlarsvselykalppsetseknsseelaalkl..fsevsPilkfshltaN 99 
                 + Lle+A+a+s++d+++aq++L++l+el+sp+gd+ q+la yf++AL +r+++s++++y+++ + +++ek  s e +  ++  f+evsP+ +f+h++a 
  RrC3561_p5  15 SILLEAARAFSDKDTTRAQQILWTLNELSSPYGDTEQKLAYYFLQALFNRMTGSGERCYRTMVTAAATEKACSFESTRKTVlkFQEVSPWATFGHVAAT 113
                 689***********************************************************999999888555544444468**************** PP

        GRAS 100 qaIleavegeervHiiDfdisqGlQWpaLlqaLasRpegppslRiTgvgspesg......skeeleetgerLakfAeelgvpfefnvlvak.rledlel 191
                 + +  + +ge ++Hi+D++ + ++QWp+Ll+aLa+R++++p+lR+T+v+ ++++       +++++e+g+r++kfA+ +gvpf+fn++++  +l++++l
  RrC3561_p5 114 EHL-GSSDGEAKIHIVDISSTFCTQWPTLLEALATRSDDTPHLRLTTVVVANKHvndqtaTHRMMKEIGNRMEKFARLMGVPFKFNIIHHVgDLSEFDL 211
                 995.678*****************************************999988999999999************************96666******* PP

        GRAS 192 eeLrvkpgEalaVnlvlqlhrlldesvsleserdevLklvkslsPkvvvvveqeadh.nse.....sFlerflealeyysalfdsleaklpreseerik 284
                 +eL++k +E+laVn+v ++h +     +  ++rd+v++ +++l+P++v++ve+ead+ ++e     +F++ f e+l+++ ++f+sle+++ r+s+e+ +
  RrC3561_p5 212 NELDLKADEVLAVNCVGAMHGIT----PRGNPRDAVISNFRRLRPRIVTIVEEEADLvGEEegfddEFFRSFGECLRWFRVCFESLEESFTRTSNEKLM 306
                 **********************8....888889************************7665788889******************************** PP

        GRAS 285 vErellgreivnvvacegaerrerhetlekWrerleeaGFkpvplsekaakqaklllrkvksdg..yrveeesgslv.lgWkdrpLvsvSaWr 374
                 +Er+  gr+iv++vace+++++er+et++kW++r+++ GF++v +s+++a+++++llr++k +g   +v++++++ + l+W+d+p+v++SaWr
  RrC3561_p5 307 LERV-AGRAIVDLVACEHSDSTERRETARKWSRRMRNGGFGAVGYSDEVADDVRALLRRYK-EGvwSMVQCSDATGIfLCWRDQPVVWASAWR 397
                 ***9.********************************************************.4444888877666655**************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5098548.3841375IPR005202Transcription factor GRAS
PfamPF035142.2E-10815397IPR005202Transcription factor GRAS
Sequence ? help Back to Top
Protein Sequence    Length: 399 aa     Download sequence    Send to blast
PPSFDFSSNA KWADSILLEA ARAFSDKDTT RAQQILWTLN ELSSPYGDTE QKLAYYFLQA  60
LFNRMTGSGE RCYRTMVTAA ATEKACSFES TRKTVLKFQE VSPWATFGHV AATEHLGSSD  120
GEAKIHIVDI SSTFCTQWPT LLEALATRSD DTPHLRLTTV VVANKHVNDQ TATHRMMKEI  180
GNRMEKFARL MGVPFKFNII HHVGDLSEFD LNELDLKADE VLAVNCVGAM HGITPRGNPR  240
DAVISNFRRL RPRIVTIVEE EADLVGEEEG FDDEFFRSFG ECLRWFRVCF ESLEESFTRT  300
SNEKLMLERV AGRAIVDLVA CEHSDSTERR ETARKWSRRM RNGGFGAVGY SDEVADDVRA  360
LLRRYKEGVW SMVQCSDATG IFLCWRDQPV VWASAWRPT
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5b3g_B0.0139975475Protein SHORT-ROOT
5b3h_B0.0139921421Protein SHORT-ROOT
5b3h_E0.0139921421Protein SHORT-ROOT
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor required for quiescent center cells specification and maintenance of surrounding stem cells, and for the asymmetric cell division involved in radial pattern formation in roots. Essential for both cell division and cell specification. Regulates the radial organization of the shoot axial organs and is required for normal shoot gravitropism. Directly controls the transcription of SCR, and when associated with SCR, of MGP, RLK, TRI, NUC and SCL3. {ECO:0000269|PubMed:10850497, ECO:0000269|PubMed:12569126, ECO:0000269|PubMed:15314023, ECO:0000269|PubMed:16640459, ECO:0000269|PubMed:17446396, ECO:0000269|PubMed:9670559}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK3529190.0AK352919.1 Thellungiella halophila mRNA, complete cds, clone: RTFL01-11-P18.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_018485081.10.0PREDICTED: protein SHORT-ROOT-like
SwissprotQ9SZF70.0SHR_ARATH; Protein SHORT-ROOT
TrEMBLA0A397L4H60.0A0A397L4H6_BRACM; Uncharacterized protein
STRINGBo7g118650.10.0(Brassica oleracea)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM61042547
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G37650.10.0GRAS family protein
Publications ? help Back to Top
  1. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  2. Muraro D, et al.
    Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(2): p. 857-62
    [PMID:24381155]
  3. Tian H,Jia Y,Niu T,Yu Q,Ding Z
    The key players of the primary root growth and development also function in lateral roots in Arabidopsis.
    Plant Cell Rep., 2014. 33(5): p. 745-53
    [PMID:24504658]
  4. Gao X,Wang C,Cui H
    Identification of bundle sheath cell fate factors provides new tools for C3-to-C4 engineering.
    Plant Signal Behav, 2018.
    [PMID:24819776]
  5. Ahrazem O, et al.
    Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.
    Plant Sci., 2015. 234: p. 60-73
    [PMID:25804810]
  6. Jia Y, et al.
    The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development.
    J. Exp. Bot., 2015. 66(15): p. 4631-42
    [PMID:25998905]
  7. Zhang M, et al.
    A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.
    Plant J., 2015. 83(4): p. 582-99
    [PMID:26072661]
  8. Moreno-Risueno MA, et al.
    Transcriptional control of tissue formation throughout root development.
    Science, 2015. 350(6259): p. 426-30
    [PMID:26494755]
  9. Miguel A,Milhinhos A,Novák O,Jones B,Miguel CM
    The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.
    J. Exp. Bot., 2016. 67(5): p. 1545-55
    [PMID:26709311]
  10. Gong X, et al.
    SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.
    Plant Physiol., 2016. 170(3): p. 1675-83
    [PMID:26818732]
  11. Kim ES, et al.
    HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots.
    Physiol Plant, 2016. 157(2): p. 221-33
    [PMID:26968317]
  12. Lee SA, et al.
    Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.
    Mol Plant, 2016. 9(6): p. 870-84
    [PMID:26970019]
  13. Li Q,Zhao Y,Yue M,Xue Y,Bao S
    The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage.
    J Genet Genomics, 2016. 43(4): p. 187-97
    [PMID:27090604]
  14. Clark NM, et al.
    Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.
    Elife, 2017.
    [PMID:27288545]
  15. Yoon EK, et al.
    Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.
    Mol Plant, 2016. 9(8): p. 1197-1209
    [PMID:27353361]
  16. Waszczak C, et al.
    SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.
    Plant Cell, 2016. 28(8): p. 1844-59
    [PMID:27432873]
  17. Yu Q, et al.
    A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.
    PLoS Genet., 2016. 12(9): p. e1006175
    [PMID:27583367]
  18. Sparks EE, et al.
    Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors.
    Dev. Cell, 2016. 39(5): p. 585-596
    [PMID:27923776]
  19. Hirano Y, et al.
    Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD.
    Nat Plants, 2017. 3: p. 17010
    [PMID:28211915]
  20. Henry S, et al.
    SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.
    Dev. Biol., 2017. 425(1): p. 1-7
    [PMID:28263767]
  21. Möller BK, et al.
    Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(12): p. E2533-E2539
    [PMID:28265057]
  22. Kobayashi A,Miura S,Kozaki A
    INDETERMINATE DOMAIN PROTEIN binding sequences in the 5'-untranslated region and promoter of the SCARECROW gene play crucial and distinct roles in regulating SCARECROW expression in roots and leaves.
    Plant Mol. Biol., 2017. 94(1-2): p. 1-13
    [PMID:28324206]
  23. Díaz-Triviño S,Long Y,Scheres B,Blilou I
    Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.
    Methods Mol. Biol., 2017. 1629: p. 83-103
    [PMID:28623581]
  24. Long Y, et al.
    In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
    Nature, 2017. 548(7665): p. 97-102
    [PMID:28746306]
  25. Yu Q, et al.
    Cell-Fate Specification in Arabidopsis Roots Requires Coordinative Action of Lineage Instruction and Positional Reprogramming.
    Plant Physiol., 2017. 175(2): p. 816-827
    [PMID:28821591]
  26. Spiegelman Z,Lee CM,Gallagher KL
    KinG Is a Plant-Specific Kinesin That Regulates Both Intra- and Intercellular Movement of SHORT-ROOT.
    Plant Physiol., 2018. 176(1): p. 392-405
    [PMID:29122988]
  27. Bustillo-Avendaño E, et al.
    Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis.
    Plant Physiol., 2018. 176(2): p. 1709-1727
    [PMID:29233938]