PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Vang0058ss00600.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Vigna
Family GRAS
Protein Properties Length: 288aa    MW: 32064.7 Da    PI: 4.9024
Description GRAS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Vang0058ss00600.1genomeSNUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1GRAS2131.6e-65222727262
               GRAS  27 lselaspdgdpmqRlaayfteALaarlarsvselykalppsetseknsseelaalkl.fsevsPilkfshltaNqaIleavegeervHiiDf 117
                        l+elasp+gd  q+la+yf++AL  r ++s++++yk+l++ ++++++ +++     l f+evsP+ +f+h++ N aIlea+ege ++HiiD+
  Vang0058ss00600.1   2 LNELASPYGDCDQKLASYFLQALFCRATESGERCYKTLSSVAEKNHSFDSARRLI-LkFQEVSPWTTFGHVASNGAILEALEGEPKLHIIDL 92 
                        899***********************************99999844444333344.26********************************** PP

               GRAS 118 disqGlQWpaLlqaLasRpegppslRiTgvgspesgskeeleetgerLakfAeelgvpfefnvlvakrledleleeLrvkpgEalaVnlvlq 209
                        + + ++QWp+Ll+aLa+R++++p+l++T+v+         ++e+g+r++kfA+ +gvpfefnv+  + l dl+ e L v++gEa+aVn+v +
  Vang0058ss00600.1  93 SNTLCTQWPTLLEALATRNDETPHLKLTVVAL----AGSVMKEVGQRMEKFARLMGVPFEFNVI--SGLRDLTKEGLGVQEGEAIAVNCVGA 178
                        ********************************....99************************96..99************************ PP

               GRAS 210 lhrlldesvsleserdevLklvkslsPkvvvvveqeadh..nsesFlerfleale 262
                        l r+      +e+ r+++++++ksl Pkvv+vve+ead   ++e+F++ f e+l+
  Vang0058ss00600.1 179 LRRVE-----VEE-RENLIRVFKSLGPKVVTVVEEEADFcsSREDFVKCFEECLK 227
                        ***97.....444.789*********************8767789*****99997 PP

2GRAS25.21.8e-08231286323374
               GRAS 323 GFkpvplsekaakqaklllrkvk.sdgyrve...eesgslvlgWkdrpLvsvSaWr 374
                         F+pv +s+++++++k+ll++++ ++   v    ++   ++l+Wk++p+v++SaW+
  Vang0058ss00600.1 231 AFSPVGFSDDVVDDVKALLKRYQpGWSLVVSqgdDHLSGIYLTWKEEPVVWASAWK 286
                        59*********************666555554422344566**************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5098536.7061287IPR005202Transcription factor GRAS
PfamPF035145.5E-632227IPR005202Transcription factor GRAS
PfamPF035146.2E-6231286IPR005202Transcription factor GRAS
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0008356Biological Processasymmetric cell division
GO:0009956Biological Processradial pattern formation
GO:0045930Biological Processnegative regulation of mitotic cell cycle
GO:0048366Biological Processleaf development
GO:0055072Biological Processiron ion homeostasis
GO:0005634Cellular Componentnucleus
GO:0043565Molecular Functionsequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 288 aa     Download sequence    Send to blast
MLNELASPYG DCDQKLASYF LQALFCRATE SGERCYKTLS SVAEKNHSFD SARRLILKFQ  60
EVSPWTTFGH VASNGAILEA LEGEPKLHII DLSNTLCTQW PTLLEALATR NDETPHLKLT  120
VVALAGSVMK EVGQRMEKFA RLMGVPFEFN VISGLRDLTK EGLGVQEGEA IAVNCVGALR  180
RVEVEERENL IRVFKSLGPK VVTVVEEEAD FCSSREDFVK CFEECLKLRN AFSPVGFSDD  240
VVDDVKALLK RYQPGWSLVV SQGDDHLSGI YLTWKEEPVV WASAWKP*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5b3g_B1e-1022287113474Protein SHORT-ROOT
5b3h_B1e-103228759420Protein SHORT-ROOT
5b3h_E1e-103228759420Protein SHORT-ROOT
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor required for quiescent center cells specification and maintenance of surrounding stem cells, and for the asymmetric cell division involved in radial pattern formation in roots. Essential for both cell division and cell specification. Regulates the radial organization of the shoot axial organs and is required for normal shoot gravitropism. Directly controls the transcription of SCR, and when associated with SCR, of MGP, RLK, TRI, NUC and SCL3. {ECO:0000269|PubMed:10850497, ECO:0000269|PubMed:12569126, ECO:0000269|PubMed:15314023, ECO:0000269|PubMed:16640459, ECO:0000269|PubMed:17446396, ECO:0000269|PubMed:9670559}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapVang0058ss00600.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAP0150400.0AP015040.1 Vigna angularis var. angularis DNA, chromosome 7, almost complete sequence, cultivar: Shumari.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_003546837.10.0protein SHORT-ROOT
RefseqXP_028202708.10.0protein SHORT-ROOT-like
SwissprotQ9SZF71e-102SHR_ARATH; Protein SHORT-ROOT
TrEMBLA0A445GND10.0A0A445GND1_GLYSO; Protein SHORT-ROOT
TrEMBLI1MD470.0I1MD47_SOYBN; Uncharacterized protein
STRINGGLYMA15G03290.10.0(Glycine max)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF129734106
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G37650.12e-98GRAS family protein
Publications ? help Back to Top
  1. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  2. Muraro D, et al.
    Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(2): p. 857-62
    [PMID:24381155]
  3. Tian H,Jia Y,Niu T,Yu Q,Ding Z
    The key players of the primary root growth and development also function in lateral roots in Arabidopsis.
    Plant Cell Rep., 2014. 33(5): p. 745-53
    [PMID:24504658]
  4. Gao X,Wang C,Cui H
    Identification of bundle sheath cell fate factors provides new tools for C3-to-C4 engineering.
    Plant Signal Behav, 2018.
    [PMID:24819776]
  5. Ahrazem O, et al.
    Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.
    Plant Sci., 2015. 234: p. 60-73
    [PMID:25804810]
  6. Jia Y, et al.
    The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development.
    J. Exp. Bot., 2015. 66(15): p. 4631-42
    [PMID:25998905]
  7. Zhang M, et al.
    A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.
    Plant J., 2015. 83(4): p. 582-99
    [PMID:26072661]
  8. Moreno-Risueno MA, et al.
    Transcriptional control of tissue formation throughout root development.
    Science, 2015. 350(6259): p. 426-30
    [PMID:26494755]
  9. Miguel A,Milhinhos A,Novák O,Jones B,Miguel CM
    The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.
    J. Exp. Bot., 2016. 67(5): p. 1545-55
    [PMID:26709311]
  10. Gong X, et al.
    SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.
    Plant Physiol., 2016. 170(3): p. 1675-83
    [PMID:26818732]
  11. Kim ES, et al.
    HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots.
    Physiol Plant, 2016. 157(2): p. 221-33
    [PMID:26968317]
  12. Lee SA, et al.
    Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.
    Mol Plant, 2016. 9(6): p. 870-84
    [PMID:26970019]
  13. Li Q,Zhao Y,Yue M,Xue Y,Bao S
    The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage.
    J Genet Genomics, 2016. 43(4): p. 187-97
    [PMID:27090604]
  14. Clark NM, et al.
    Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.
    Elife, 2017.
    [PMID:27288545]
  15. Yoon EK, et al.
    Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.
    Mol Plant, 2016. 9(8): p. 1197-1209
    [PMID:27353361]
  16. Waszczak C, et al.
    SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.
    Plant Cell, 2016. 28(8): p. 1844-59
    [PMID:27432873]
  17. Yu Q, et al.
    A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.
    PLoS Genet., 2016. 12(9): p. e1006175
    [PMID:27583367]
  18. Sparks EE, et al.
    Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors.
    Dev. Cell, 2016. 39(5): p. 585-596
    [PMID:27923776]
  19. Hirano Y, et al.
    Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD.
    Nat Plants, 2017. 3: p. 17010
    [PMID:28211915]
  20. Henry S, et al.
    SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.
    Dev. Biol., 2017. 425(1): p. 1-7
    [PMID:28263767]
  21. Möller BK, et al.
    Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(12): p. E2533-E2539
    [PMID:28265057]
  22. Kobayashi A,Miura S,Kozaki A
    INDETERMINATE DOMAIN PROTEIN binding sequences in the 5'-untranslated region and promoter of the SCARECROW gene play crucial and distinct roles in regulating SCARECROW expression in roots and leaves.
    Plant Mol. Biol., 2017. 94(1-2): p. 1-13
    [PMID:28324206]
  23. Díaz-Triviño S,Long Y,Scheres B,Blilou I
    Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.
    Methods Mol. Biol., 2017. 1629: p. 83-103
    [PMID:28623581]
  24. Long Y, et al.
    In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
    Nature, 2017. 548(7665): p. 97-102
    [PMID:28746306]
  25. Yu Q, et al.
    Cell-Fate Specification in Arabidopsis Roots Requires Coordinative Action of Lineage Instruction and Positional Reprogramming.
    Plant Physiol., 2017. 175(2): p. 816-827
    [PMID:28821591]
  26. Spiegelman Z,Lee CM,Gallagher KL
    KinG Is a Plant-Specific Kinesin That Regulates Both Intra- and Intercellular Movement of SHORT-ROOT.
    Plant Physiol., 2018. 176(1): p. 392-405
    [PMID:29122988]
  27. Bustillo-Avendaño E, et al.
    Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis.
    Plant Physiol., 2018. 176(2): p. 1709-1727
    [PMID:29233938]