PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID XP_009797929.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Nicotianoideae; Nicotianeae; Nicotiana
Family M-type_MADS
Protein Properties Length: 132aa    MW: 15073.5 Da    PI: 8.2067
Description M-type_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
XP_009797929.1genomeNCBIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF86.11.9e-271059251
                    ---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE- CS
          SRF-TF  2 rienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                    rienk+nrqvtfsk + g+ KKA+E+SvLCdaeva+i+fs++gkl++yss
  XP_009797929.1 10 RIENKINRQVTFSKMKGGLVKKAHEISVLCDAEVALIVFSHKGKLFDYSS 59
                    8***********************************************96 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004323.0E-36160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006630.614161IPR002100Transcription factor, MADS-box
CDDcd002651.09E-36273No hitNo description
SuperFamilySSF554552.88E-30276IPR002100Transcription factor, MADS-box
PRINTSPR004041.6E-29323IPR002100Transcription factor, MADS-box
PfamPF003191.6E-231057IPR002100Transcription factor, MADS-box
PRINTSPR004041.6E-292338IPR002100Transcription factor, MADS-box
PRINTSPR004041.6E-293859IPR002100Transcription factor, MADS-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0003677Molecular FunctionDNA binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 132 aa     Download sequence    Send to blast
MGRGKVELRR IENKINRQVT FSKMKGGLVK KAHEISVLCD AEVALIVFSH KGKLFDYSSD  60
SCLTDTIDVY FNYGGEWVIS PEVLYNKRLV HIWNKFDPDL LSYKDLREEF TKELGFIEVK  120
QLLVVGLSGG SI
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5f28_A1e-19195190MEF2C
5f28_B1e-19195190MEF2C
5f28_C1e-19195190MEF2C
5f28_D1e-19195190MEF2C
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor that promotes early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class homeotic proteins (By similarity). {ECO:0000250}.
UniProtTranscription factor that promotes early floral meristem identity in synergy with LEAFY. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Is indispensable for normal development of sepals and petals in flowers. Regulates positively the B class homeotic proteins APETALA3 and PISTILLATA with the cooperation of LEAFY and UFO. Interacts with SEPALLATA3 or AP3/PI heterodimer to form complexes that could be involved in genes regulation during floral meristem development. Regulates positively AGAMOUS in cooperation with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Together with AGL24 and SVP, controls the identity of the floral meristem and regulates expression of class B, C and E genes. Represses flowering time genes AGL24, SVP and SOC1 in emerging floral meristems. {ECO:0000269|PubMed:11283333, ECO:0000269|PubMed:17428825, ECO:0000269|PubMed:17794879, ECO:0000269|PubMed:19656343, ECO:0000269|Ref.8}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Negatively regulated by TFL1 and by the C class floral homeotic protein AGAMOUS. Positively regulated by CAULIFLOWER. {ECO:0000269|PubMed:9783581}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_009797929.11e-92PREDICTED: truncated transcription factor CAULIFLOWER D-like
SwissprotD7KWY63e-36AP1_ARALL; Floral homeotic protein APETALA 1
SwissprotP356314e-36AP1_ARATH; Floral homeotic protein APETALA 1
TrEMBLA0A1U7YFB22e-91A0A1U7YFB2_NICSY; truncated transcription factor CAULIFLOWER D-like
STRINGXP_009797929.14e-92(Nicotiana sylvestris)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA4024625
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G69120.12e-38MIKC_MADS family protein
Publications ? help Back to Top
  1. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  2. Furner I,Ellis L,Bakht S,Mirza B,Sheikh M
    CAUT lines: a novel resource for studies of cell autonomy in Arabidopsis.
    Plant J., 2008. 53(4): p. 645-60
    [PMID:18269574]
  3. Hu TT, et al.
    The Arabidopsis lyrata genome sequence and the basis of rapid genome size change.
    Nat. Genet., 2011. 43(5): p. 476-81
    [PMID:21478890]
  4. Winterhagen P,Tiyayon P,Samach A,Hegele M,Wünsche JN
    Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan.
    Plant Physiol. Biochem., 2013. 71: p. 184-90
    [PMID:23954797]
  5. Lei HJ, et al.
    Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry.
    Gene, 2013. 531(2): p. 158-67
    [PMID:24055423]
  6. Yu Y, et al.
    MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering.
    Plant Sci., 2013. 212: p. 1-9
    [PMID:24094048]
  7. Qian H, et al.
    The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana.
    J. Plant Physiol., 2014. 171(5): p. 92-8
    [PMID:24484962]
  8. Maejima K, et al.
    Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody.
    Plant J., 2014. 78(4): p. 541-54
    [PMID:24597566]
  9. Azeez A,Miskolczi P,Tylewicz S,Bhalerao RP
    A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth.
    Curr. Biol., 2014. 24(7): p. 717-24
    [PMID:24656832]
  10. MacLean AM, et al.
    Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner.
    PLoS Biol., 2014. 12(4): p. e1001835
    [PMID:24714165]
  11. Yamaguchi N, et al.
    Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis.
    Science, 2014. 344(6184): p. 638-41
    [PMID:24812402]
  12. Ji H, et al.
    Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis.
    BMC Plant Biol., 2014. 14: p. 237
    [PMID:25201173]
  13. Zheng T, et al.
    Overexpression of two PsnAP1 genes from Populus simonii × P. nigra causes early flowering in transgenic tobacco and Arabidopsis.
    PLoS ONE, 2014. 9(10): p. e111725
    [PMID:25360739]
  14. Zhao S, et al.
    ZmSOC1, a MADS-box transcription factor from Zea mays, promotes flowering in Arabidopsis.
    Int J Mol Sci, 2014. 15(11): p. 19987-20003
    [PMID:25372944]
  15. Li L, et al.
    Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis.
    BMC Plant Biol., 2014. 14: p. 381
    [PMID:25547226]
  16. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
    [PMID:25719734]
  17. Thoma R,Chandler JW
    Polarity in the early floral meristem of Arabidopsis.
    Plant Signal Behav, 2015. 10(4): p. e992733
    [PMID:25806573]
  18. Chen Z, et al.
    Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.
    Transgenic Res., 2015. 24(4): p. 705-15
    [PMID:25820621]
  19. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
    [PMID:25948280]
  20. Sacharowski SP, et al.
    SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development.
    Plant Cell, 2015. 27(7): p. 1889-906
    [PMID:26106148]
  21. Minguet EG,Segard S,Charavay C,Parcy F
    MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.
    PLoS ONE, 2015. 10(8): p. e0135586
    [PMID:26285209]
  22. Han Y,Jiao Y
    APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e989039
    [PMID:26359644]
  23. Andrés F, et al.
    Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE.
    Plant Physiol., 2015. 169(3): p. 2187-99
    [PMID:26417007]
  24. Xie W, et al.
    Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.
    Front Plant Sci, 2015. 6: p. 829
    [PMID:26528302]
  25. Yu Y, et al.
    WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana.
    Plant J., 2016. 85(1): p. 96-106
    [PMID:26643131]
  26. McCarthy EW,Mohamed A,Litt A
    Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence.
    Front Plant Sci, 2015. 6: p. 1076
    [PMID:26697035]
  27. Saleh A,Alvarez-Venegas R,Liu N,Avramova Z
    Corrigendum to "Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci" [Gene. 2008 Oct. 15; 423(1):43-47].
    Gene, 2016. 585(2): p. 266-7
    [PMID:27094816]
  28. Tang M,Tao YB,Xu ZF
    Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha.
    PeerJ, 2016. 4: p. e1969
    [PMID:27168978]
  29. Ye L,Wang B,Zhang W,Shan H,Kong H
    Gains and Losses of Cis-regulatory Elements Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space, and Level of Expression and Regulation of One Paralog by the Other.
    Plant Physiol., 2016. 171(2): p. 1055-69
    [PMID:27208240]
  30. Hou CJ,Yang CH
    Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1.
    Plant Mol. Biol., 2016. 91(4-5): p. 563-79
    [PMID:27216814]
  31. Monniaux M, et al.
    Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta.
    New Phytol., 2017. 216(2): p. 549-561
    [PMID:28098947]
  32. Goslin K, et al.
    Transcription Factor Interplay between LEAFY and APETALA1/CAULIFLOWER during Floral Initiation.
    Plant Physiol., 2017. 174(2): p. 1097-1109
    [PMID:28385730]
  33. Sawettalake N,Bunnag S,Wang Y,Shen L,Yu H
    DOAP1 Promotes Flowering in the Orchid Dendrobium Chao Praya Smile.
    Front Plant Sci, 2017. 8: p. 400
    [PMID:28386268]
  34. Kim D,Abdelaziz ME,Ntui VO,Guo X,Al-Babili S
    Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis.
    Biochem. Biophys. Res. Commun., 2017. 490(4): p. 1162-1167
    [PMID:28668394]
  35. Serrano-Mislata A, et al.
    Regulatory interplay between LEAFY, APETALA1/CAULIFLOWER and TERMINAL FLOWER1: New insights into an old relationship.
    Plant Signal Behav, 2017. 12(10): p. e1370164
    [PMID:28873010]
  36. Zhang GZ, et al.
    Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.
    Plant Cell Rep., 2017. 36(12): p. 1995-2006
    [PMID:29027578]
  37. Shimada T, et al.
    The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds.
    Plant Cell Physiol., 2018. 59(11): p. 2331-2338
    [PMID:30099531]
  38. Monniaux M, et al.
    The role of APETALA1 in petal number robustness.
    Elife, 2019.
    [PMID:30334736]
  39. Vijayraghavan U,Siddiqi I,Meyerowitz E
    Isolation of an 800 kb contiguous DNA fragment encompassing a 3.5-cM region of chromosome 1 in Arabidopsis using YAC clones.
    Genome, 1995. 38(4): p. 817-23
    [PMID:7672612]