| Signature Domain? help Back to Top |
 |
| No. |
Domain |
Score |
E-value |
Start |
End |
HMM Start |
HMM End |
| 1 | AP2 | 46 | 1.3e-14 | 27 | 77 | 1 | 55 |
AP2 1 sgykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
s+y+GV+ +k grW+A+ + +k+++lg f+t+ eAa+a+++a+ k +g
cra_locus_323_iso_150_len_547_ver_3 27 SKYRGVTLHK-CGRWEARMGQF--L-GKKYVYLGLFDTEIEAARAYDKAAIKCNG 77
89********.7******5553..2.26**********99**********99776 PP
|
| Gene Ontology ? help Back to Top |
| GO Term |
GO Category |
GO Description |
| GO:0006355 | Biological Process | regulation of transcription, DNA-templated |
| GO:0006412 | Biological Process | translation |
| GO:0006633 | Biological Process | fatty acid biosynthetic process |
| GO:0009060 | Biological Process | aerobic respiration |
| GO:0015979 | Biological Process | photosynthesis |
| GO:0015992 | Biological Process | proton transport |
| GO:0018298 | Biological Process | protein-chromophore linkage |
| GO:0022904 | Biological Process | respiratory electron transport chain |
| GO:0046034 | Biological Process | ATP metabolic process |
| GO:0005840 | Cellular Component | ribosome |
| GO:0009522 | Cellular Component | photosystem I |
| GO:0009535 | Cellular Component | chloroplast thylakoid membrane |
| GO:0016021 | Cellular Component | integral component of membrane |
| GO:0000287 | Molecular Function | magnesium ion binding |
| GO:0003677 | Molecular Function | DNA binding |
| GO:0003700 | Molecular Function | transcription factor activity, sequence-specific DNA binding |
| GO:0003735 | Molecular Function | structural constituent of ribosome |
| GO:0004129 | Molecular Function | cytochrome-c oxidase activity |
| GO:0004519 | Molecular Function | endonuclease activity |
| GO:0004857 | Molecular Function | enzyme inhibitor activity |
| GO:0005506 | Molecular Function | iron ion binding |
| GO:0005507 | Molecular Function | copper ion binding |
| GO:0005515 | Molecular Function | protein binding |
| GO:0005524 | Molecular Function | ATP binding |
| GO:0008137 | Molecular Function | NADH dehydrogenase (ubiquinone) activity |
| GO:0008270 | Molecular Function | zinc ion binding |
| GO:0016168 | Molecular Function | chlorophyll binding |
| GO:0020037 | Molecular Function | heme binding |
| GO:0051539 | Molecular Function | 4 iron, 4 sulfur cluster binding |
| Functional Description ? help
Back to Top |
| Source |
Description |
| UniProt | Probable transcriptional activator that promotes early floral meristem identity (PubMed:7919989). Is required subsequently for the transition of an inflorescence meristem into a floral meristem (PubMed:1675158). Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes (PubMed:1675158, PubMed:23034631). Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and SEUSS (PubMed:1675158). Directly represses AGAMOUS by recruiting the transcriptional corepressor TOPLESS and the histone deacetylase HDA19 (PubMed:23034631). It is also required during seed development (PubMed:1675158). {ECO:0000269|PubMed:1675158, ECO:0000269|PubMed:23034631, ECO:0000269|PubMed:7919989}. |
| UniProt | Transcription factor (PubMed:22408071). Involved in spikelet transition and development (Probable) (PubMed:22408071). Prevents lemma and palea elongation as well as grain growth (PubMed:28066457, PubMed:22408071). Required for seed shattering through specifying abscission zone (AZ) development (PubMed:22408071). {ECO:0000269|PubMed:22408071, ECO:0000269|PubMed:28066457, ECO:0000305|PubMed:26631749}. |
| UniProt | Transcription factor (PubMed:22408071). Involved in spikelet transition and development (PubMed:22408071). Prevents lemma and palea elongation as well as grain growth (PubMed:22408071). Required for seed shattering through specifying abscission zone (AZ) development (PubMed:22408071). {ECO:0000269|PubMed:22408071}. |
| Publications
? help Back to Top |
- Duarte JM, et al.
Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol., 2006. 23(2): p. 469-78 [PMID:16280546] - Zhou Y, et al.
Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant Cell, 2012. 24(3): p. 1034-48 [PMID:22408071] - Thamilarasan SK,Park JI,Jung HJ,Nou IS
Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea. BMC Genomics, 2014. 15: p. 422 [PMID:24888752] - Yoon J, et al.
The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J., 2014. 79(5): p. 717-28 [PMID:24923192] - Zhang GB,Yi HY,Gong JM
The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell, 2014. 26(10): p. 3984-98 [PMID:25326291] - Ranocha P,Francoz E,Burlat V,Dunand C
Expression of PRX36, PMEI6 and SBT1.7 is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion. Plant Signal Behav, 2014. 9(11): p. e977734 [PMID:25531128] - Djemal R,Khoudi H
Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). Protoplasma, 2015. 252(6): p. 1461-73 [PMID:25687296] - Kazan K
Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 2015. 20(4): p. 219-29 [PMID:25731753] - Prunet N, et al.
SQUINT promotes stem cell homeostasis and floral meristem termination in Arabidopsis through APETALA2 and CLAVATA signalling. J. Exp. Bot., 2015. 66(21): p. 6905-16 [PMID:26269626] - Xie W, et al.
Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach. Front Plant Sci, 2015. 6: p. 829 [PMID:26528302] - Wang L, et al.
Coordinated regulation of vegetative and reproductive branching in rice. Proc. Natl. Acad. Sci. U.S.A., 2015. 112(50): p. 15504-9 [PMID:26631749] - Zumajo-Cardona C,Pabón-Mora N
Evolution of the APETALA2 Gene Lineage in Seed Plants. Mol. Biol. Evol., 2016. 33(7): p. 1818-32 [PMID:27030733] - Zhao Y, et al.
An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep, 2016. 6: p. 23890 [PMID:27033976] - Gao R,Liu P,Irwanto N,Loh R,Wong SM
Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana. Plant Cell Rep., 2016. 35(11): p. 2257-2267 [PMID:27473526] - Huang Z, et al.
APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol., 2017. 215(3): p. 1197-1209 [PMID:27604611] - Dory M, et al.
Kinase-Associated Phosphoisoform Assay: a novel candidate-based method to detect specific kinase-substrate phosphorylation interactions in vivo. BMC Plant Biol., 2016. 16(1): p. 204 [PMID:27655033] - Wang P, et al.
Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis. Front Plant Sci, 2016. 7: p. 1383 [PMID:27703459] - Dai Z,Wang J,Zhu M,Miao X,Shi Z
OsMADS1 Represses microRNA172 in Elongation of Palea/Lemma Development in Rice. Front Plant Sci, 2016. 7: p. 1891 [PMID:28066457] - Sharma P, et al.
Promoter Trapping and Deletion Analysis Show Arabidopsis thaliana APETALA2 Gene Promoter Is Bidirectional and Functions as a Pollen- and Ovule-Specific Promoter in the Reverse Orientation. Appl. Biochem. Biotechnol., 2017. 182(4): p. 1591-1604 [PMID:28130768] - Kihira M, et al.
Arabidopsis thaliana FLO2 is Involved in Efficiency of Photoassimilate Translocation, Which is Associated with Leaf Growth and Aging, Yield of Seeds and Seed Quality. Plant Cell Physiol., 2017. 58(3): p. 440-450 [PMID:28158741] - Balanzà V, et al.
Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat Commun, 2018. 9(1): p. 565 [PMID:29422669] - Dotto M,Gómez MS,Soto MS,Casati P
UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana. Plant Cell Environ., 2018. 41(6): p. 1394-1406 [PMID:29447428] - Song C,Lee J,Kim T,Hong JC,Lim CO
VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis. Planta, 2018. 247(6): p. 1439-1448 [PMID:29536220]
|