PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID cra_locus_323_iso_150
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Gentianales; Apocynaceae; Rauvolfioideae; Vinceae; Catharanthinae; Catharanthus
Family AP2
Protein Properties Length: 183aa    MW: 20643.2 Da    PI: 8.2127
Description AP2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
cra_locus_323_iso_150genomeMPGR-
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP2461.3e-142777155
                                  AP2  1 sgykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
                                         s+y+GV+ +k  grW+A+   +     +k+++lg f+t+ eAa+a+++a+ k +g
  cra_locus_323_iso_150_len_547_ver_3 27 SKYRGVTLHK-CGRWEARMGQF--L-GKKYVYLGLFDTEIEAARAYDKAAIKCNG 77
                                         89********.7******5553..2.26**********99**********99776 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000182.62E-262787No hitNo description
PfamPF008472.7E-102777IPR001471AP2/ERF domain
SuperFamilySSF541717.85E-182787IPR016177DNA-binding domain
PROSITE profilePS5103215.6592885IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.104.2E-172885IPR001471AP2/ERF domain
SMARTSM003802.1E-312891IPR001471AP2/ERF domain
PRINTSPR003671.2E-62940IPR001471AP2/ERF domain
PRINTSPR003671.2E-66787IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0006412Biological Processtranslation
GO:0006633Biological Processfatty acid biosynthetic process
GO:0009060Biological Processaerobic respiration
GO:0015979Biological Processphotosynthesis
GO:0015992Biological Processproton transport
GO:0018298Biological Processprotein-chromophore linkage
GO:0022904Biological Processrespiratory electron transport chain
GO:0046034Biological ProcessATP metabolic process
GO:0005840Cellular Componentribosome
GO:0009522Cellular Componentphotosystem I
GO:0009535Cellular Componentchloroplast thylakoid membrane
GO:0016021Cellular Componentintegral component of membrane
GO:0000287Molecular Functionmagnesium ion binding
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0003735Molecular Functionstructural constituent of ribosome
GO:0004129Molecular Functioncytochrome-c oxidase activity
GO:0004519Molecular Functionendonuclease activity
GO:0004857Molecular Functionenzyme inhibitor activity
GO:0005506Molecular Functioniron ion binding
GO:0005507Molecular Functioncopper ion binding
GO:0005515Molecular Functionprotein binding
GO:0005524Molecular FunctionATP binding
GO:0008137Molecular FunctionNADH dehydrogenase (ubiquinone) activity
GO:0008270Molecular Functionzinc ion binding
GO:0016168Molecular Functionchlorophyll binding
GO:0020037Molecular Functionheme binding
GO:0051539Molecular Function4 iron, 4 sulfur cluster binding
Sequence ? help Back to Top
Protein Sequence    Length: 183 aa     Download sequence    Send to blast
XQMSNLTKEE FVHVLRRQST GFPRGSSKYR GVTLHKCGRW EARMGQFLGK KYVYLGLFDT  60
EIEAARAYDK AAIKCNGKDA VTNFDPSIYD NEFINSTESS SGNVADHNLD LSLGSSSASS  120
KRISNREQQQ QSGSTQFQVD WRQQQGLKSK QQANMVDAEE NPRSREGYNE ADTLQLLSQT  180
HLX
Functional Description ? help Back to Top
Source Description
UniProtProbable transcriptional activator that promotes early floral meristem identity (PubMed:7919989). Is required subsequently for the transition of an inflorescence meristem into a floral meristem (PubMed:1675158). Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes (PubMed:1675158, PubMed:23034631). Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and SEUSS (PubMed:1675158). Directly represses AGAMOUS by recruiting the transcriptional corepressor TOPLESS and the histone deacetylase HDA19 (PubMed:23034631). It is also required during seed development (PubMed:1675158). {ECO:0000269|PubMed:1675158, ECO:0000269|PubMed:23034631, ECO:0000269|PubMed:7919989}.
UniProtTranscription factor (PubMed:22408071). Involved in spikelet transition and development (Probable) (PubMed:22408071). Prevents lemma and palea elongation as well as grain growth (PubMed:28066457, PubMed:22408071). Required for seed shattering through specifying abscission zone (AZ) development (PubMed:22408071). {ECO:0000269|PubMed:22408071, ECO:0000269|PubMed:28066457, ECO:0000305|PubMed:26631749}.
UniProtTranscription factor (PubMed:22408071). Involved in spikelet transition and development (PubMed:22408071). Prevents lemma and palea elongation as well as grain growth (PubMed:22408071). Required for seed shattering through specifying abscission zone (AZ) development (PubMed:22408071). {ECO:0000269|PubMed:22408071}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Negatively regulated by the C class floral homeotic protein AGAMOUS in stamens and carpels. MicroRNA 172 (miRNA172) negatively regulates APETALA2 at the translational level and may modulate its expression pattern. Seems not to be influenced by jasmonate and Alternaria brassicicola. {ECO:0000269|PubMed:12805630, ECO:0000269|PubMed:12893888, ECO:0000269|PubMed:14555699}.
UniProtINDUCTION: Target of miR172 microRNA mediated cleavage, particularly during floral organ development (Probable). Induced by SH5 in spikelets abscission zones (AZ). Triggered by cold stress (PubMed:24923192). {ECO:0000269|PubMed:24923192, ECO:0000305|PubMed:26631749, ECO:0000305|PubMed:28066457}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_016491208.19e-86PREDICTED: AP2-like ethylene-responsive transcription factor TOE3 isoform X8
SwissprotA0A0N7KJT81e-67APL25_ORYSJ; APETALA2-like protein 5
SwissprotB8AVJ91e-67APL25_ORYSI; APETALA2-like protein 5
SwissprotP479271e-67AP2_ARATH; Floral homeotic protein APETALA 2
TrEMBLA0A1S4BQY52e-84A0A1S4BQY5_TOBAC; AP2-like ethylene-responsive transcription factor TOE3 isoform X8
STRINGXP_009589846.18e-85(Nicotiana tomentosiformis)
Publications ? help Back to Top
  1. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  2. Zhou Y, et al.
    Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1.
    Plant Cell, 2012. 24(3): p. 1034-48
    [PMID:22408071]
  3. Thamilarasan SK,Park JI,Jung HJ,Nou IS
    Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea.
    BMC Genomics, 2014. 15: p. 422
    [PMID:24888752]
  4. Yoon J, et al.
    The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis.
    Plant J., 2014. 79(5): p. 717-28
    [PMID:24923192]
  5. Zhang GB,Yi HY,Gong JM
    The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation.
    Plant Cell, 2014. 26(10): p. 3984-98
    [PMID:25326291]
  6. Ranocha P,Francoz E,Burlat V,Dunand C
    Expression of PRX36, PMEI6 and SBT1.7 is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion.
    Plant Signal Behav, 2014. 9(11): p. e977734
    [PMID:25531128]
  7. Djemal R,Khoudi H
    Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).
    Protoplasma, 2015. 252(6): p. 1461-73
    [PMID:25687296]
  8. Kazan K
    Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Trends Plant Sci., 2015. 20(4): p. 219-29
    [PMID:25731753]
  9. Prunet N, et al.
    SQUINT promotes stem cell homeostasis and floral meristem termination in Arabidopsis through APETALA2 and CLAVATA signalling.
    J. Exp. Bot., 2015. 66(21): p. 6905-16
    [PMID:26269626]
  10. Xie W, et al.
    Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.
    Front Plant Sci, 2015. 6: p. 829
    [PMID:26528302]
  11. Wang L, et al.
    Coordinated regulation of vegetative and reproductive branching in rice.
    Proc. Natl. Acad. Sci. U.S.A., 2015. 112(50): p. 15504-9
    [PMID:26631749]
  12. Zumajo-Cardona C,Pabón-Mora N
    Evolution of the APETALA2 Gene Lineage in Seed Plants.
    Mol. Biol. Evol., 2016. 33(7): p. 1818-32
    [PMID:27030733]
  13. Zhao Y, et al.
    An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design.
    Sci Rep, 2016. 6: p. 23890
    [PMID:27033976]
  14. Gao R,Liu P,Irwanto N,Loh R,Wong SM
    Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana.
    Plant Cell Rep., 2016. 35(11): p. 2257-2267
    [PMID:27473526]
  15. Huang Z, et al.
    APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana.
    New Phytol., 2017. 215(3): p. 1197-1209
    [PMID:27604611]
  16. Dory M, et al.
    Kinase-Associated Phosphoisoform Assay: a novel candidate-based method to detect specific kinase-substrate phosphorylation interactions in vivo.
    BMC Plant Biol., 2016. 16(1): p. 204
    [PMID:27655033]
  17. Wang P, et al.
    Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis.
    Front Plant Sci, 2016. 7: p. 1383
    [PMID:27703459]
  18. Dai Z,Wang J,Zhu M,Miao X,Shi Z
    OsMADS1 Represses microRNA172 in Elongation of Palea/Lemma Development in Rice.
    Front Plant Sci, 2016. 7: p. 1891
    [PMID:28066457]
  19. Sharma P, et al.
    Promoter Trapping and Deletion Analysis Show Arabidopsis thaliana APETALA2 Gene Promoter Is Bidirectional and Functions as a Pollen- and Ovule-Specific Promoter in the Reverse Orientation.
    Appl. Biochem. Biotechnol., 2017. 182(4): p. 1591-1604
    [PMID:28130768]
  20. Kihira M, et al.
    Arabidopsis thaliana FLO2 is Involved in Efficiency of Photoassimilate Translocation, Which is Associated with Leaf Growth and Aging, Yield of Seeds and Seed Quality.
    Plant Cell Physiol., 2017. 58(3): p. 440-450
    [PMID:28158741]
  21. Balanzà V, et al.
    Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway.
    Nat Commun, 2018. 9(1): p. 565
    [PMID:29422669]
  22. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406
    [PMID:29447428]
  23. Song C,Lee J,Kim T,Hong JC,Lim CO
    VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis.
    Planta, 2018. 247(6): p. 1439-1448
    [PMID:29536220]